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1. Introduction

The next round of collider-based experiments in particle physics will start with the LHC

finally becoming fully operational, and producing particle collision data at unprecedented

rate and energy. In the preparation for this huge enterprise, a new generation of Monte

Carlo simulation tools, like Pythia8 [1], Herwig++ [2] and Sherpa [3] has been con-

structed, to meet the increasingly complicated experimental situation and the demand for

an improved description of data at a higher level of accuracy. In addition, it was anticipated

that by moving to the new programming paradigm of object orientation and modulariza-

tion the more mundane software management task of code validation and maintenance

could be addressed in a more transparent and alleviated way. This leads to the typical

strategy of event generators, to dissect the simulation of full events into different physics

aspects, being better reflected in the modular structure of the emerging new codes.

In this paper the construction of a new physics module for the Sherpa framework is

discussed, which deals with the simulation of QED radiation in particle decays. Up to now,

this has typically been left to the Photos [4, 5] programme. However, there have been

two reasons for replacing Photos : First of all, Photos builds on a parton-shower like

collinear approximation for the simulation of photon emissions, which intrinsically has some

shortcomings when the mass of the decaying particle is not much larger than the masses

of its decay products. This has already been noted in [6, 7] and triggered the development

of the module Sophty [6] in the framework of the Herwig++ event generator. It also

has become a wide-spread belief among the authors of the main event generators that the

maintenance of interface structures to additional codes such as Photos , supplementing

QED radiation to the simulation, overwhelms the burden of constructing and maintaining

corresponding modules directly in the event generators.
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Similar to the case of Sophty in Herwig++ , the construction of the new module,

Photons++ , in Sherpa bases on the approach of Yennie, Frautschi and Suura (YFS) [8]

for the calculation of higher order QED corrections to arbitrary processes. This approach

resides on the idea of resumming the leading soft logarithms to all orders, rather than

focusing on the leading collinear terms. These soft logarithms are largely independent of

the inner process characteristics and can be calculated from the external particles and their

four-momenta only. The big advantage of the YFS formalism is that in addition it allows

for a systematic improvement of this eikonal approximation, order-by-order in the QED

coupling constant. This explains why a good fraction of the most precise tools for the

simulation of QED radiation root in this algorithm [9 – 12].

In contrast to the Sophty implementation the aim of this implementation is to ad-

dress also decays with more than two final state particles. This leads to different strategies

of enforcing four-momentum conservation after the soft photons are reconstructed. In

addition, some correction terms to restore precise results for the first order in the electro-

magnetic coupling constant are employed, improving the formal accuracy of the results of

Photons++ . This also has not been included in Sophty .

The outline of this paper is as follows: After briefly reviewing the YFS formalism in

section 2 in the framework of particle decays, the Monte Carlo algorithm adopted here

is detailed in section 3. Then, some higher order corrections are discussed in section 4.

Finally, in section 5 the new code is validated through a detailed comparison with Horace

and Windec [13] for the case of leptonic Z and W decays before some results relating to

other particle decays are presented.

2. YFS-exponentiation

In this section, the YFS approach [8] for an approximative description of real and virtual

QED corrections to arbitrary scattering or decay processes will shortly be reviewed, in the

framework of particle decays. The virtue of this formalism is that it can systematically be

improved, order by order in the electromagnetic coupling constant α. The YFS approach

bases on the observation that the soft limits for matrix elements with real and/or virtual

photons exhibit a universal behaviour, and on the fact that the corresponding soft diver-

gences can be factorised into universal factors multiplying leading order matrix elements.

When defining the final state as a configuration of primary decay products with mo-

menta pf and any number of additional soft photons with momenta k the fully inclusive

decay rate reads

Γ =
1

2M

∞
∑

nR=0

1

nR!

∫

dΦp dΦk (2π)4δ
(

∑

pi −
∑

pf −
∑

k
)

∣

∣

∣

∣

∣

∞
∑

nV =0

MnV + 1
2
nR

nR

∣

∣

∣

∣

∣

2

(2.1)

where pi is the four-momentum of the decaying particle. Here and in the following nV and

nR are the numbers of additional virtual and real photons, respectively, that show up in the

higher-order matrix element but not in the uncorrected zeroth order matrix element (thus

labelled by M0
0). The starting point of the YFS algorithm is to approximate these dressed
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matrix elements through the zeroth order one times eikonal factors, which depend on the

external particles only. This effectively catches the leading logarithmic QED corrections to

the process. The correct result can then be restored order by order in perturbation theory

by supplementing the non-leading, process-dependent pieces.

In the case of one virtual photon this can be formalised as

M1
0 = αBM0

0 +M1
0 , (2.2)

where M1
0 is the infrared-subtracted matrix element including one virtual photon (with

M1
0 finite when k → 0 due to the subtraction). All soft divergences due to this virtual

photon are contained in the process-independent, universal factor B, see appendix A for a

more thorough discussion. Here, and in the following, the sub- and superscripts denote the

number of real photons and the order of α, respectively, both for the infrared-subtracted

and for the original matrix elements.

Similar to the one-photon case, YFS showed that the subsequent insertion of further

virtual photons in all possible ways leads to

M0
0 = M0

0

M1
0 = αBM0

0 +M1
0

M2
0 =

(αB)2

2!
M0

0 + αBM1
0 +M2

0 (2.3)

and so on. Therefore, for a fixed order in α,

MnV
0 =

nV
∑

r=0

MnV −r
0

(αB)r

r!
(2.4)

and, summing over all numbers of virtual photons nV ,

∞
∑

nV =0

MnV

0 = exp(αB)

∞
∑

nV =0

MnV

0 . (2.5)

Since photons do not carry any charge and because virtual photons inserted in closed

charged loops do not produce any additional infrared singularity,1 this can be generalised

to any number of real photons, such that

∣

∣

∣

∣

∣

∞
∑

nV =0

MnV + 1
2
nR

nR

∣

∣

∣

∣

∣

2

= exp(2αB)

∣

∣

∣

∣

∣

∞
∑

nV =0

M
nV + 1

2
nR

nR

∣

∣

∣

∣

∣

2

. (2.6)

Hence, M
nV + 1

2
nR

nR
is free of soft singularities due to virtual photons but it still may contain

those due to real photons.

1A similar program cannot directly be translated to QCD, where the emitted gluons act as parts of

antennae emitting further gluons, thus modifying the pattern of possible infrared poles and thus leading

logarithms in each emission.
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YFS showed in [8] that the factorisation for real photon emission proceeds on the level

of the squared matrix elements rather than on the amplitude level. For a single photon

emission therefore this yields

1

2(2π)3

∣

∣

∣

∣

∣

∞
∑

nV =0

M
nV + 1

2
1

∣

∣

∣

∣

∣

2

= S̃(k)

∣

∣

∣

∣

∣

∞
∑

nV =0

MnV
0

∣

∣

∣

∣

∣

2

+
∞
∑

nV =0

β̃nV +1
1 (k) . (2.7)

Here, S̃(k) is an eikonal factor containing the soft divergence related to the real photon

emission, see appendix A. Denoting with β̃nV +nR
nR

the complete IR-finite (subtracted)

squared matrix element for the basic process plus the emission of nR photons including nV

virtual photons and using the abbreviation

β̃nR
=

∞
∑

nV =0

β̃nV +nR
nR

, (2.8)

the squared matrix element for nR real emissions, summed over all possible virtual photon

corrections, can be written as

(

1

2(2π)3

)nR

∣

∣

∣

∣

∣

∞
∑

nV =0

M
nV + 1

2
nR

nR

∣

∣

∣

∣

∣

2

= β̃0

nR
∏

i=1

[

S̃(ki)
]

+

nR
∑

i=1

[

β̃1(ki)

S̃(ki)

]

nR
∏

j=1

[

S̃(kj)
]

+

nR
∑

i,j=1
i6=j

[

β̃2(ki, kj)

S̃(ki)S̃(kj)

]

nR
∏

l=1

[

S̃(kl)
]

+ . . .

+

nR
∑

i=1

[

β̃nR−1(k1, . . . , ki−1, ki+1, . . . , knR
) S̃(ki)

]

+ β̃nR
(k1, . . . , knR

) . (2.9)

Demanding agreement with the exact result up to O(α), this expression thus contains only

terms with β̃0
0 , β̃1

0 and β̃1
1 . Then

(

1

2(2π)3

)nR

∣

∣

∣

∣

∣

∞
∑

nV =0

M
nV + 1

2
nR

nR

∣

∣

∣

∣

∣

2

=
[

β̃0
0 + β̃1

0

]

nR
∏

i=1

[

S̃(ki)
]

+

nR
∑

i=1

[

β̃1
1(ki)

S̃(ki)

]

nR
∏

j=1

[

S̃(kj)
]

+ O(α2) . (2.10)

Inserting this into the expression for the decay rate and expressing the δ-functions ensuring

four-momentum conservation as exponentials yields,

2M · Γ =
∑

nR

1

nR!

∫

dΦpf

{

exp [2αB]

∫

dy exp
[

iy
(

∑

pi −
∑

pf

)]

×
(∫

d3k

k
S̃(k)e−iyk

)nR (

β̃0
0 + β̃1

0

)

}

+
∑

nR−1

1

(nR − 1)!

∫

dΦpf

{

exp [2αB]

∫

dy
d3K

K
exp

[

iy
(

∑

pi −
∑

pf −K
)]

×
(
∫

d3k

k
S̃(k)e−iyk

)nR−1

β̃1
1(K)

}

+ O(α2)
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=

∫

d4y

∫

dΦpf

{

exp [2αB] exp

[

iy
(

∑

pi −
∑

pf

)

+

∫

d3k

k
S̃(k)e−iyk

]

×
[

β̃0
0 + β̃1

0 +

∫

d3K

K
e−iyK β̃1

1(K) + O(α2)

]}

. (2.11)

As before, all singularities due to virtual photons are contained in B, while all singularities

due to real emissions are incorporated in the integral over S̃(k). To restore the momentum

conserving δ-function the divergences have to be split off this integral. This can be done

by simply subtracting the terms that are divergent for k → 0. To this end, a small “soft”

region Ω is defined together with an infrared-safe function D(Ω),2 such that
∫

d3k

k
S̃(k)e−iyk

=

∫

d3k

k

{

S̃(k)
[

(1 − Θ(k, Ω)) + e−iykΘ(k, Ω) +
(

e−iyk − 1
)

(1 − Θ(k, Ω))
]}

= 2αB̃(Ω) +D(Ω) (2.12)

where

D(Ω) =

∫

d3k

k
S̃(k)

[(

e−iyk − 1
)

(1 − Θ(k,Ω)) + e−iykΘ(k,Ω)
]

Ω→0−→
∫

d3k

k
S̃(k) e−iyk Θ(k,Ω) (2.13)

and

2αB̃(Ω) =

∫

d3k

k
S̃(k) (1 − Θ(k,Ω)) =

∫

Ω

d3k

k
S̃(k) . (2.14)

Reinserting this into the cross section, executing the y-integration and reexpanding the

exponentiated integral yields

2M Γ =
∑

nR

1

nR!

∫

dΦpf
dΦ′

k(2π)4δ4
(

∑

pi −
∑

pf −
∑

k
)

e2α(B+B̃(Ω))

×
nR
∏

i=1

S̃(ki)Θ(ki,Ω)

(

β̃0
0 + β̃1

0 +

nR
∑

i=1

β̃1
1(ki)

S̃(ki)
+ O(α2)

)

. (2.15)

The whole factorisation is independent of possible spin correlations in the “undressed”

matrix element. Thus, the same result is obtained if the spin-summed and averaged matrix

element squared |M|2 is replaced by ραβMαMβ ∗
where ραβ is a spin density matrix.

The infrared subtracted squared matrix elements read, up to O(α),

β̃0
0 = M0

0M
0
0
∗

β̃1
0 = M0

0M
1
0
∗
+ M1

0M
0
0
∗

β̃1
1 =

1

2(2π)3
M

1
2
1 M

1
2
1

∗

− S̃(k) M0
0M

0
0
∗

(2.16)

2Obviously Θ(k, Ω) divides the phase space into two regions. While Ω comprises the region containing

the infrared divergence, (1 − Ω) is completely free of those divergences. Hence, Θ(k, Ω) = 1 if k /∈ Ω and

zero otherwise. Thus, D(Ω) is IR save and B̃(Ω) contains the divergence.
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or

β̃0
0 = ραβ M

0α
0 M0β

0

∗

β̃1
0 = ραβ

(

M0α
0 M1β

0

∗
+ M1α

0 M0β
0

∗
)

β̃1
0 = ραβ

(

1

2(2π)3
M

1
2
α

1 M
1
2
β

1

∗

− S̃(k) M0α
0 M0β

0

∗
)

. (2.17)

3. The algorithm

3.1 The master formula

The basic, undressed matrix element (no additional photons) reads

2M · Γ0 =

∫

dΦq (2π)4δ4(pC + pN −QC −QN ) |M|2 (3.1)

where the differential phase-space element for the outgoing momenta q ∈ {QC , QN} is

given by

dΦq =
n
∏

i=1

d3qi
(2π3)2q0i

. (3.2)

Here, and in the following, the initial and final state momenta have been classified to

whether the respective particles are charged or neutral: the sums of all initial state momenta

are labelled by pC,N for charged and neutral particles, respectively, while QC,N denotes the

sums of all charged or neutral final state momenta. After QED corrections, the QC and

QN will become PC and PN , respectively. K is the sum of all additional real, resolved

Bremsstrahlungs-photons generated in the process, whereas photons already present in

the core process are included in PN and QN , respectively (an example for this seemingly

unlikely case would be the rare decay B+ → K∗+γ).

In the previous section the factorisation of infrared divergent terms and the construc-

tion of infrared-finite expressions for cross sections with all possible numbers of resolved

photons has been discussed. In these expressions the universal, process-independent parts

of the QED corrections have been separated and exponentiated, the residual process depen-

dence and the effect of particle spins etc. has been absorbed in infrared-finite, subtracted

terms β̃, cf. eq. (2.15). With small changes in the notation this form of the cross section

thus reads

2M · Γ =
∑

nγ

1

nγ !

∫

dΦ eY (Ω)

nγ
∏

i=1

S̃(ki)Θ(ki,Ω) β̃0
0 C . (3.3)

Here, the phase space has been separated into a phase space element for the particles of

the “core” process and one for the additional nγ resolved real photons,

dΦ = dΦp dΦk (2π)4δ (pC + pN − PC − PN −K) . (3.4)

– 7 –
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with

dΦp =
n
∏

i=1

d3pi

(2π)32p0
i

(3.5)

dΦk =

nγ
∏

i=1

d3k

k0
. (3.6)

Note that the factor 1
2(2π)3 , missing in the photon phase space element, has already been

incorporated in the eikonal factor S̃(k), in accordance with the choice made in [8]. In the

equation above, eq. (3.3), the undressed matrix element β̃0
0 has been factored out and the

remainder of the perturbative expansion in α has been combined in the factor C,

C = 1 +
1

β̃0
0

(

β̃1
0 +

nγ
∑

i=1

β̃1
1(ki)

S̃(ki)
+ O(α2)

)

. (3.7)

Furthermore, the YFS-Form-Factor has been introduced

Y (Ω) =
∑

i<j

Yij(Ω) =
∑

i<j

2α
(

Bij + B̃ij(Ω)
)

(3.8)

where the sum i < j runs over all pairs of charged particles, taking into account each pair

only once. The infrared factors Bij and B̃ij are defined as

Bij = − i

8π3
ZiZjθiθj

∫

d4k
1

k2

(

2piθi − k

k2 − 2(k · pi)θi
+

2pjθj + k

k2 + 2(k · pj)θj

)2

(3.9)

B̃ij(Ω) =
1

4π2
ZiZjθiθj

∫

d4kδ(k2) (1 − Θ(k,Ω))

(

pi

pi · k
− pj

pj · k

)2

. (3.10)

They are the generalisation of the quantities defined in the last section, cf. eqs. (2.2)

and (2.14). Both contain the virtual and real infrared divergences, respectively. These

divergences cancel according to the Kinoshita-Lee-Nauenberg theorem [14, 15]. Thus, each

Yij(Ω) is guaranteed to be finite, which is explicitely shown in appendix A. In the terms

above, Zi and Zj are the charges of the particles i and j in terms of the positron charge e,

and the signature factors θ = ±1 for particles in the final or initial state, respectively. The

symbol Θ, already defined at the end of section 2, refers to a phase space constraint with

Ω denoting the soft, unresolvable region of photon radiation. Hence, Θ(k,Ω) = 1 if k /∈ Ω

and zero otherwise. If this division is done by defining an energy cut-off, the definition of Ω

is not Lorentz-invariant and the frame in which this cut-off forms a flat hypersurface also

needs to be specified. The advantage of splitting the photon phase space in that manner

lies in the alleviation of integrating S̃(k) over k. If the cut-off is defined in the frame the

photon generation and momentum reconstruction will be done in3 then the integration over

the photon energy separates from the angular integration (see appendix C), leading to yet

another simplification of the calculation.

3In the algorithm presented here, this will be the rest frame of the multipole, i.e. the combined rest

frame of all charged particles pC + PC .
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The eikonal factor S̃(k) has already been introduced in the last section. It is defined as

S̃(k) =
∑

i<j

S̃ij(k) =
α

4π2

∑

i<j

ZiZjθiθj

(

pi

pi · k
− pj

pj · k

)2

. (3.11)

However, despite all terms being finite in eq. (3.3), it cannot be used straight away for

Monte Carlo generation. This is because it is written in terms of the already corrected final

state momenta pi and not the original undressed momenta qi. The problem here is that the

undressed momenta are defined in an n-body phase space whereas the dressed momenta are

part of an (n+nγ)-body phase space. This neccessitates a mapping procedure of the n-body

onto the (n + nγ)-body phase space. In principle, details of this mapping procedure are

irrelevant as long as it respects the soft limit of photon radiation not altering the original

kinematics, i.e. in this limit the momenta of the orinial particles in the (n+nγ)-body phase

space have to fall exactly onto those of the n-body phase space.

3.2 Phase space transformation

To solve this, consider the rest frame of all charged particles involved in the basic ma-

trix element

PM = pC + PC . (3.12)

These particles form the multipole responsible for the Bremsstrahlung of the additional

photons. In the rest frame of this multipole, a simple form of the mapping consists of

a mere rescaling of the three-momenta of all final state particles by a common factor u

such that the additional photons are accomodated. Clearly, the initial state momenta

cannot be altered, because they have already been fixed when the basic matrix element

was calculated. So, the task is to rewrite eq. (3.4), explicitely in the rest frame of the

multipole in question. The neccessary transformations are detailed in the appendix, cf.

appendix B.1, here it suffices to give the result. It reads

dΦ = dΦp dΦk (2π)4δ (pC + pN − PC − PN −K)

=
n
∏

i=1

[

d3pi

(2π)32p0
i

] nγ
∏

i=1

[

d3k

k0

]

(2π)4δ (pC + pN − PC − PN −K)

= dΦp dΦk

m3
M,p

M2(P 0
C + P 0

N +K0)
(2π)3δ3(~PM ) (2π)δ

(

P 0
M − P 0

C − p0
C

)

. (3.13)

In a similar fashion, the phase space related to the zeroth order uncorrected cross section

can be transformed to

dΦ0 = (2π)4dΦq δ
4 (pC + pN −QC −QN )

=
m3

M,q

M2(Q0
C +Q0

N )
dΦq (2π)3δ3(~QM ) (2π)δ

(

Q0
M −Q0

C − p0
C

)

. (3.14)

In both cases, mM,p (mM,q) is the invariant mass of the (uncorrected) multipole and the

vector components P 0
C and P 0

N (Q0
C and Q0

N ) are taken in the PM (QM ) rest frame. The

Jacobian emerging in both cases will ultimately find its way into a correction weight in the

Monte Carlo realisation of the method.
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3.3 Mapping of momenta

As mentioned before, the mapping procedure still has to be defined in detail to reconstruct

the particles’ momenta. The basic ideas of the mapping procedure suggested here are as

follows: When representing all four-vectors in the rest frame of the multipole

• treat all final state momenta equally

• scale their three-momenta by a common factor u

• distribute the photon momenta

• assign the energy-component of every vector such that momentum conservation and

all on-shell conditions are fullfilled

This will ultimately necessitate a change of the initial state momenta as well. However,

since they are already fixed for the calculation of the basic matrix element this change will

reduce to employing another frame during the reconstruction procedure.

However, closer examination reveals that the mapping paradigm above in fact enforces

a different treatment for purely neutral and partially or fully charged initial state configu-

rations. The reason is that the momenta of the newly generated Bremsstrahlungs photons

need to be balanced. Furthermore, the phase space integral still has to be rewritten in

terms of the undressed, original final state momenta defining the original matrix element

and cross section without QED radiation. This will be addressed in the next sections,

section 3.3.1, 3.3.2, where the case of decays, i.e. single initial state particles, either neutral

or charged, will be discussed separately. Formally, of course, both treatments will yield

identical results, since only the soft limit of photon emission is defined from first principles

and because both treatments respect this limit.

3.3.1 Neutral initial states: final state multipoles

The first case to be considered is the case of a neutral particle of mass M decaying into

a final state with charged particles. The reconstruction paradigm above completely fixes

the reconstruction procedure to a rescaling of all final state momenta, both charged and

neutral, and balancing the summed photon momentum K by moving the frame of the

multipole and, hence, of the initial state.4 Denoting, again, with qi the undressed and with

pi the dressed final state momenta, and denoting their respective sums by QC , QN , PC and

PN , as declared earlier, and using K as the summed momentum of all Bremsstrahlungs

photons, the reconstruction prescription reads as follows:

4Note that it is not possible to distribute any fraction of the photon momentum equally to all final states

with the constraint that the multipole remains in its rest frame. It therefore is mandatory to balance the

photon momentum with the initial state.
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• The momenta of the QM rest frame

pµ
N =

(

√

M2 + ~Q2
N ,

~QN

)

Qµ
C =

(

Q0
C , ~QC = 0

)

Qµ
N =

(

Q0
N ,

~QN

)

(3.15)

will be mapped onto

pµ
N −→ p′N

µ
=

(
√

M2 + (u~QN + ~K)2, u ~QN + ~K = u~pN + ~K

)

Pµ
C =

(

P 0
C , u ~QC = 0

)

(3.16)

Pµ
N =

(

P 0
N , u ~QN

)

(3.17)

Kµ =
(

K0, ~K
)

(3.18)

in the PM rest frame.

• pN and p′N are the same physical vector but in different frames. The scaling parameter

u now is determined by momentum conservation, i.e.

0 =

√

M2 +
(

u~QN + ~K
)2

−
∑

C

√

m2
i + u2~q2i −

∑

N

√

m2
i + u2~q2i −K0 , (3.19)

where the subscripts C and N in the sums indicate a summation over charged and

neutral particles, respectively.

• The phase space element expressed in terms of the undressed final state momenta

then reads

dΦ = (2π)4 dΦq dΦk δ
3
(

~QM

)

δ
(

Q0
M −Q0

C − p0
C

) m3
M,p

M2
(

P 0
C + P 0

N +K0
)

×u3n−4

~p2
N

p0
N

−∑C,N
~q2
i

q0
i

~p′
N

~p
N

p′0
N

−∑C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

. (3.20)

3.3.2 Charged initial state: mixed multipoles

The other case of relevance in the framework of this publication is the decay of a charged

particle of mass M , leading to multipoles containing both initial and final state particles

emitting the photons. Again the paradigm above completely fixes the reconstruction pro-

cedure. Basically, the problem is to compensate the photon momentum after the final state

momenta have been rescaled. This is achieved in the following way:
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• The momenta of the QM rest frame

pµ
C =

(
√

M2 + ~Q2
C ,− ~QC

)

Qµ
C =

(

Q0
C , ~QC

)

Qµ
N =

(

Q0
N , ~QN = −2~QC

)

(3.21)

will be mapped onto

pµ
C −→ pµ

c
′ =

(
√

M2 + (u~QC − nC~κ)2,−u~QC + nC~κ = u~pC + nC~κ

)

Pµ
C =

(

P 0
C , u ~QC − nC~κ

)

Pµ
N =

(

P 0
N , u ~QN − nN~κ = −2u~QC − nN~κ

)

Kµ =
(

K0, ~K
)

(3.22)

in the PM rest frame. Here, nC and nN are the numbers of charged and neutral final

state particles, respectively, and the abbreviation

~κ =
1

2nC + nN

~K (3.23)

has been introduced for a more compact notation. Again, pC and p′C are the same

physical vector represented in different frames, thus specifying the relation between

the QM and the PM rest frame. In the soft limit, i.e. forK → 0, the scaling parameter

u→ 1 and both vectors are identical, as required.

• In general, the scaling parameter is fixed through energy conservation as the solu-

tion of

0 =

√

M2+
(

u~QC − nC~κ
)2

−
∑

C

√

m2
i + (u~qi − ~κ)2−

∑

N

√

m2
i + (u~qi − ~κ)2−K0 .

(3.24)

• The phase space integral rewritten in terms of the qi reads

dΦ = (2π)4 dΦq dΦk δ
3
(

~QM

)

δ
(

Q0
M −Q0

C − p0
C

) m3
M,p

M2
(

P 0
C + P 0

N +K0
)

×u3n−4

~p2
C

p0
C

−∑C,N
~q2
i

q0
i

~p′
C

~pC

p′0
C

−∑C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

. (3.25)

It is worth noting that this is identical to the case of a neutral particle in the ini-

tial state.
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3.4 Event generation

Having transformed the phase space integrals allows to write the full decay rate including

real and virtual QED radiation as

2M · Γ =
∑

nγ

1

nγ !

∫

dΦq dΦk(2π)4δ3
(

~QM

)

δ
(

Q0
M −Q0

C − p0
C

)

eY (Ω) β̃0
0 C

×
nγ
∏

i=1

[

S̃(ki)Θ(ki,Ω)
] m3

M,p u
3n−4

M2
(

P 0
C + P 0

N +K0
)

~p2

p0 −∑C,N
~q2
i

q0
i

~p′~p
p′0

−∑C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

, (3.26)

where p and p′ now generally stand for the initial state particle.

The zeroth order differential decay rate dΓ0, which will be used by default in all decays

in Sherpa can easily be extracted and, employing eq. (3.14), reads

Γ =
∑

nγ

1

nγ !

∫

dΓ0 dΦk e
Y (Ω)

nγ
∏

i=1

[

S̃(ki)Θ(ki,Ω)
]

×
m3

M,p

m3
M,q

Q0
C +Q0

N

P 0
C + P 0

N +K0
u3n−4

~p2

p0 −∑C,N
~q2
i

q0
i

~p′~p
p′0

−∑C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

C . (3.27)

Up to here no approximations have been made at all. In order to generate the corresponding

distribution with Monte Carlo techniques, however, this form is not particularly useful. To

simplify eq. (3.27) therefor, hit-or-miss and reweighting techniques are used, demanding

upper bounds for the various pieces:

• All higher orders are neglected, thus setting C to one.

• The maximum of all Jacobians is given for K = 0, coinciding with the leading-order

phase space.

• The dependences on the dressed momenta in the eikonal factors are removed by

approximating these factors by those depending on the undressed variables from the

generation.

The resulting crude distribution reads

Γcr =

∞
∑

nγ=0

1

nγ!

∫

dΓ0 dΦk e
Y (ω)

nγ
∏

i=1

S̃q(ki)Θ(ki,Ω). (3.28)

After executing all k-integrations giving

∫ nγ
∏

i=1

d3ki

k0
i

S̃q(ki)Θ(ki,Ω) = n̄nγ (3.29)

the YFS-Form-Factor is estimated by

Y (Ω) ≈ −n̄ (3.30)
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for suitable choices of Ω.5 Reinserting this into the crude estimate, the leading-order cross

section can be seperated from the QED radiation, and

Γcr = Γ0

∞
∑

nγ=0

[

1

nγ !
e−n̄n̄nγ

]

. (3.31)

The result is the undressed zeroth order cross section times a Poisson distribution with

the avarage photon multiplicity n̄. In this factorised state the photon distribution can

be separated from the generation of the basic matrix element. Assuming the latter to be

already generated it can a posteriori be corrected to the leading-logarithmic all-order QED

correction by generating the photon distribution as follows:

1. Generate the number of photons according to a Poissonian distribution with mean n̄.

2. Generate each photon’s momentum according to S̃q(k). This implies

• that its energy k0 is distributed according to

ρ(k0) ∼ 1

k0
(3.32)

• and that the azimutal and polar angles are distributed according to

ρ(θ, φ) ∼
∑

i<j

(

qi
qi · ek

− qj
qj · ek

)2

, (3.33)

where ek is a null vector of unit length,

eµk =
1

k0
kµ with e2k = 0 . (3.34)

It is possible that more than one hard photon is created such that the total energy of

all photons exceeds the decaying system’s energy. Obviously, this has to be avoided

to guarantee energy conservation. A simple way of achieving this is a mere veto on

such situations, accompanied with a repetition of photon generation, starting from

step 1.

3. Reconstruct the momenta.

4. Calculate and apply all weights. This yields a total weight, namely

W = Wdipole ×WYFS ×WJ,L ×WJ,M ×WC , (3.35)

5In this publication (and in the code), this choice has been to limit the photon energies by setting an

infrared energy cut-off of 0.1GeV, unless otherwise stated.
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where the individual weights are given by

Wdipole =

nγ
∏

i=1

S̃(pC , PC , ki)

S̃(pC , QC , ki)
(3.36)

WYFS = exp (Y (pC , PC ,Ω) + n̄) (3.37)

WJ,L =
m3

M,p

m3
M,q

Q0
C +Q0

N

P 0
C + P 0

N +K0
(3.38)

WJ,M = u3n−4

~p2

p0 −
∑

C,N
~q2
i

q0
i

~p′~p
p′0

−
∑

C,N
~pi~qi

p0
i

n
∏

i=1

(

q0i
p0

i

)

(3.39)

WC = C . (3.40)

Here, Wdipole corrects the emitting dipoles from the unmapped to the mapped mo-

menta, WYFS accounts for the exact YFS form factor, WJ,L essentially denotes the

Jacobian due to the Lorentz-transformation, WJ,M is the weight due the momenta-

mapping, and WC incorporates higher-order corrections, where available.

The maximum of the combined weight indeed is smaller than the maximal weight

employed for generating the distribution, W < W (K = 0). Hence application of

the combined weight is just a realisation of a hit-or-miss method. The distribution

obtained is now the exact distribution of (3.3) or (3.27).

4. Higher order corrections

In the last section, the procedure generating the QED corrections to cross sections, following

eq. (2.15), has been outlined. By construction, the algorithm yields exact all-orders results,

if all matrix elements are known. This, however, is never the case. On the other hand, the

dominant universal soft photon contributions, real and virtual, are included to all orders

in the YFS form factor, eq. (3.8). Thus, if the zeroth order undressed matrix element only

is known, i.e. if C = 1, the photons will be solely generated according to a product of

eikonal factors S̃(ki). Consequently, their distribution will be correct in the soft limit only.

Away from this limit, exact matrix elements at a given order may be mandatory to yield

satisfactory and sufficient accuracy. For most applications on decay matrix elements - the

topic of this publication - it will be sufficient to implement the matrix element correction

to the first order in α, i.e. for the emission of one additional real or virtual photon. It

should be noted here that hard photon emission predominantly occurs in situations where

potential emitters are characterised by a large energy-to-mass ratio and that in any case

hard photon emissions tend to populate regions in phase space that are collinear w.r.t. the

emitters. In contrast, large angle radiation has the tendency to be predominantly soft.

4.1 Approximations for real emission matrix elements

As already explained, the vast majority of hard photon emissions deserving an improved

description through corrections to the soft limit underlying the YFS approach occurs in the
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collinear region of emission phase space. In this region, the well-known collinear factorisa-

tion can be used to approximate β̃1
1 . This amounts to an inclusion of the leading collinear

logarithms arising in this limit, which are incorporated for instance in the Altarelli-Parisi

evolution equation [16] and corresponding splitting kernels.

Since masses are to be taken fully into account the quasi-collinear limit defined in [17,

18] replaces the more familiar collinear one. In this limit the matrix element factorises as

∑

λγ

∣

∣

∣

∣

M
1
2
1 (pi, k)

∣

∣

∣

∣

2
∼=







e2Z2
i g

(out)(pi, k)
∣

∣M0
0(pi + k)

∣

∣

2
if i ∈ F.S.

e2Z2
i g

(in)(pi, k)
∣

∣M0
0(x · pi)

∣

∣

2
if i ∈ I.S..

(4.1)

Here the g
(in,out)(pi, k) denote massive splitting functions. For instance, for the case of a

fermion emitting a photon they are given by

g
(out)(pi, k) =

1

(pi · k)

(

Pff (z) − m2
i

(pi · k)

)

(4.2)

g
(in)(pi, k) =

1

x(pi · k)

(

Pff (x) − xm2
i

(pi · k)

)

, (4.3)

where x =
p0

i−k0

p0
i

and z =
p0

i

p0
i +k0 are the fractions of the fermion energies kept after the emis-

sion of the photon, and where Pff (y) is the well-known Altarelli-Parisi splitting function

Pff (y) =
1 + y2

1 − y
. (4.4)

The dipole splitting functions of [17] have been generalised further in [19] to incorporate

also polarisation. Thus, in principle they could directly be used in the framework of the

YFS formulation replacing the original eikonal factors. In the framework of this publication,

however, they are employed as universal correction factors, reweigthing explicit photon

emission such that the correct collinear limit is recovered. Since they interpolate smoothly

between both limits they already include the soft limit. Therefore, in the correction weights,

these soft terms have to be subtracted because they are already acounted for in the orginal

YFS eikonals. In addition, since the dipole splitting kernels refer to an emitter and a

spectator forming the dipole, for each dipole two such terms have to be applied, such that

the squared matrix element with the dipole terms approximating the photon emission reads

∣

∣

∣

∣

M
1
2
1

∣

∣

∣

∣

2
∼= −e2

∑

i6=j

[

ZiZjθiθjgij(pi, pj , k)
∣

∣M0
0

∣

∣

2
]

(4.5)

∼= −e2
∑

i<j

[

ZiZjθiθj

(

gij(pi, pj , k) + gji(pj, pi, k)
) ∣

∣M0
0

∣

∣

2
]

. (4.6)

Here, charge conservation in the form
∑

Ziθi = 0 has been used. The second particle

in each massive splitting function gij denotes the spectator of the emission process and

accounts for the recoil, thus ensuring four-momentum conservation. It should also be

noted that the sum in the equations above runs over charged particles only.

– 16 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
8

In order to subtract the soft terms, it is useful to consider the soft and quasi-collinear

limits of the dipole splitting kernels gij(pi, pj, k):

gij(pi, pj, k)
k→0∼ 1

(pi · k)

(

2(pi · pj)

(pi · k) + (pj · k)
− m2

i

(pi · k)

)

(4.7)

gij(pi, pj, k)
p·k→0∼ g

(out/in) . (4.8)

Because the soft limit is universal and spin-independent, it is a straightforward exercise to

define soft-subtracted dipole splitting kernels

ḡij(pi, pj , k) = gij(pi, pj , k) − g
(soft)
ij (pi, pj, k)

= gij(pi, pj , k) −
1

(pi · k)

(

2(pi · pj)

(pi · k) + (pj · k)
− m2

i

(pi · k)

)

. (4.9)

The soft-subtracted dipole splitting kernels ḡij now have the correct (finite) soft limit while

retaining the original quasi-collinear limit of gij (eq. (4.8)). Accordingly, the soft-subtracted

matrix element can be approximated as

β̃1
1 = − α

4π2

∑

i<j

ZiZjθiθj

(

ḡij(pi, pj , k) + ḡji(pj, pi, k)
)

β̃0
0 . (4.10)

The exact form of the gij(pi, pj, k) for different emitter-spectator configurations will be

given in appendix D.

4.2 Exact real emission matrix elements

In order to achieve an even higher precision, the implementation of exact higher-order full

matrix elements becomes mandatory. It should be clear, however, that large differences

with the approximated matrix elements above will occur only in non-singular regions of

comparable hard, wide-angle emissions. Since the module presented in this publication,

Photons++ , is embedded in the Sherpa framework it is easy to implement such infrared

subtracted squared matrix elements, making use of tools and functions already provided

within the framework. In particular, some basic building blocks for the calculation of

helicity amplitudes already used in [20, 21] can be recycled to construct the neccessary,

infrared-subtracted one-photon real emission matrix elements, which are then evaluated at

momentum configurations generated by the algorithm of section 3. These building blocks

are listed in appendix E. Exact first-order matrix elements have so been implemented for

a number of relevant matrix elements, see below. It is worthwile to stress that in principle

also second-order precision could be achieved, if neccessary.

In general, the infrared-subtracted squared matrix element can be written as

β̃1
1 =

1

2(2π)3
M

1
2
1 M

1
2
1

∗

− S̃(k) M0
0M0

0
∗
, (4.11)

and it is only the amplitudes M that are process-specific and need to be listed for the

different processes. It should be noted that within the Sherpa framework the real emission

matrix elements are straightforward to implement, in contrast, the incorporation of loop
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matrix elements is somewhat more involved: in those cases the integral has to be calculated

analytically and the divergences must be cancelled before implementation as a function of

the outer momenta.

4.2.1 Two-body decays of type V → FF

The matrix elements for two body decays where one neutral vector particle decays into two

charged fermions, V → FF , read6

M0
0 = ie εVµ (p, λ) ū(q1, s1)γ

µ (cLPL + cRPR) v(q2, s2) (4.12)

M
1
2
1 = ie2 εVµ (p, λ) ū(p1, s1)

[

γν 6p1+6k +m

(p1 + k)2 −m2
γµ (cLPL + cRPR)

− γµ (cLPL + cRPR)
6p2+6k −m

(p2 + k)2 −m2
γν

]

v(q1, s1) ε
γ∗

ν (k, κ) .

Of course, momentum conservation must hold, and therefore p = q1 + q2 in the former and

p = p1 + p2 + k in the latter case. Hence, if nγ of the generated event exceeds the number

of real photons in the respective infrared subtracted squared matrix element, a projection

of the higher dimensional phase space onto the lower dimensional one has to be performed.

In practise, this amounts to redoing the reconstruction procedure using only a subset of all

photons generated in that run. Furthermore,

cLPL + cRPR = cL
1 − γ5

2
+ cR

1 + γ5

2
. (4.13)

Thus, the generic matrix element is adjustable to various decays of neutral vector bosons.

A few key examples of the couplings cL and cR to the left and right-handed fermionic

currents are listed in table 1.

The real-emission matrix elements depend on the polarisations, and they are expressed

in terms of the X, Y and Z functions listed in appendix E as

M0
0 = ie X

(

q1, s1; ε
V ; q2, s̄2; cL, cR

)

(4.14)

and

M
1
2
1 = ie2

[

1

2(p2
a−m2)

(

1+
m
√

p2
a

)

∑

s

X (p1, s1, ε
γ∗, pa, s, 1, 1)X

(

pa, s, ε
V , p2, s̄2, cL, cR

)

+
1

2(p2
a −m2)

(

1 − m
√

p2
a

)

∑

s

X (p1, s1, ε
γ∗, pa, s̄, 1, 1)X

(

pa, s̄, ε
V , p2, s̄2, cL, cR

)

− 1

2(p2
b −m2)



1 +
m
√

p2
b





∑

s

X
(

p1, s1, ε
V , pb, s, cL, cR

)

X (pb, s, ε
γ∗, p2, s̄2, 1, 1)

− 1

2(p2
b −m2)



1 − m
√

p2
b





∑

s

X
(

p1, s1, ε
V , pb, s̄, cL, cR

)

X (pb, s̄, ε
γ∗, p2, s̄2, 1, 1)





6All particles involved are considered to be point-like, i.e. their vertices do not contain form factors.
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Process cL cR

Z → ℓℓ̄ ie
2sW cW

2s2W
ie

2sW cW
(2s2W − 1)

J/ψ → ℓℓ̄ −ie −ie

Table 1: Values of the coupling constants of different vector particles to the left- and right-handed

leptonic currents.

where

pa = p1 + k

pb = p2 + k, (4.15)

and where p1 and p2 are the momenta of the final state leptons. The bar over the fermion

spin label si signifies an anti-particle.

4.3 Virtual emission correction β̃1
0

The only virtual corrections occuring to level O(α) are

β̃1
0 = M1

0M
0
0
∗
+ M0

0M
1
0
∗

= M1
0M0

0
∗
+ M0

0M1
0
∗ − 2αBβ̃0

0 . (4.16)

For the above case of decays of the type V → FF they read

β̃1
0 =

α

π

[

ln
m2

V

m2
F

−A

]

β̃0
0 m2

V ≫ m2
F , (4.17)

with

A =

{

1 in on-shell scheme
7
4 in MS scheme

(4.18)

which agrees with [22, 23]. Effects of potentially different left- and right-handed couplings

cL and cR, cf. table 1, only enter in terms suppressed by
m2

F

m2
V

and are curently neglected

in Photons++ .

For the process W → ℓν, cf. [24], the first order virtual correction reads

β̃1
0 =

α

π

[

ln
mW

mℓ
+

1

2

]

β̃0
0 m2

W ≫ m2
ℓ . (4.19)

5. Results

In this section some of the results of the Photons++ module, as it is implemented within

the Sherpa framework, are presented. The focus lies on the central distribution produced

by the preceding calculations, the total energy of all photons radiated per event in the rest

frame of the decaying particle. In addition, angular distributions for dipole and multipole

configurations will be shown.
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5.1 Validation: leptonic heavy gauge boson decays

The leptonic decays of W and Z bosons, W → lνl and Z → ll̄, will play the central

role in validating the accuracy of the Photons++ implementation of the YFS approach.

Before studying in more detail these processes and comparing the results obtained with

Photons++ with those from other codes, namely Amegic++ [20] and Windec [24], it

is worthwhile to discuss one of the key distributions, namely the total energy radiated off

the decay.

5.1.1 Radiated photon energy

The result for this distribution, namely the total energy radiated off the decay in form

of photons, is presented in figure 1. For both processes, i.e. for both leptonic Z and W

decays, different leptons with different masses have been considered. Clearly, radiation is

most important in final states involving electrons, being the lightest fermions taken into

account, while radiation off heavier fermions is increasingly suppressed. One of the most

prominent features of every radiated energy spectrum is the kink at around half the boson

mass, which is due to kinematics. It limits the energy involved in single photon emission off

the final state fermion to its maximal energy, roughly half the boson mass. This kink gets

washed out and moves to the left with increasing fermion mass. Events with total radiated

energy surpassing this limit must involve at least two sufficiently hard photons, arranged

such that they recoil, at least partially, against each other. Naively, in the classical limit,

such configurations are dominated by photon emission off both fermions. This motivates

why radiation beyond the kink is absent in the W -decay spectra. Along the same lines of

reasoning, such double hard photon emissions are decreasingly probable with rising lepton

masses. However, since in the present state only approximated matrix elements up to O(α)

are included in the program these double emissions are not described correctly yet.

In figure 1 also different treatments of higher order matrix elements are exhibited:

photons emitted solely according to the purely soft YFS eikonals (left panel) are contrasted

with corrections due to the approximated matrix elements presented in section 4.1. The

former distribution, labelled with “soft”, thus is correct in the soft limit but it is inadequate

for the description of hard, collinear photon radiation. This, including virtual corrections

of O(α), is displayed in the panel labelled with “soft & collinear”.

The inclusion of these corrections gives reasonably good results as long as most photons

are soft or if complicated correlations of hard photons are not important.

5.1.2 Comparison with other codes

After checking the physical sanity of the implementation in principle, results obtained

with Photons++ are now to be compared to those from other, established and dedicated

Monte Carlo event generators capable of describing QED effects in the decays of W and Z

bosons, in particular with the Windec package [24]. This program aims at the description

of the production and decay of W -bosons in hadronic collisions. Windec performs the

decay of the W -boson into lepton-neutrino pairs including QED corrections summed in the

YFS-approach and corrected by exact O(α) real emission and virtual correction matrix
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Figure 1: Photon radiation in leptonic decays of Z (upper panel) and W bosons (lower panel) for

different leptons, including fictional heavy τ ’s in a range of masses. In the left panel, (a), C = 1,

i.e. photon generation according to the YFS form factor only is depicted, whereas in the right

panel, (b), corrections up to O(α) are included using the dipole splitting functions and the virtual

corrections, cf. section 4.3 and 4.1. All distributions are normalised on the total decay width of

the decay into the respective lepton and lepton-neutrino pair. The infrared cut-off in all cases is

set to 0.1GeV.

elements. They are obtained for the decay only in the narrow width approximation, i.e.

only the W → ℓν decay is taken into account. Furthermore, in this section, the results

of Photons++ are compared with the exact, fixed order, one-photon emission results

of the Sherpa -inherent matrix element generator Amegic++ . However, comparisons

with Amegic++ are only sensible when the average photon number of the process under

consideration is low, i.e. when multiphoton emission gives a negligible contribution to the

differential cross section. Additionally, it should be stressed that Amegic++ lacks virtual

corrections and therefore comparisons are sensible for normalised distributions only.

The channel best suited for comparing all three generators is W → τντ . Besides the

low avarage photon multiplicity (with an infrared cut-off of 0.1 GeV multiphoton events

make up for less than 3% of all radiative events) virtual corrections merely amount to a 1%

correction of the zeroth order cross section. Furthermore, as discussed earlier, the majority

of multiphoton events will consist of at most one single hard photon and additional soft

ones. Therefore, these events will be aproximately described by the hard emission only.

– 21 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
8

 [GeV]γE
0 10 20 30 40 50

]
-1

 [
G

eV
γ

d
EΓd  

to
t

Γ1

-610

-510

-410

-310

-210

WINDEC

PHOTONS++

AMEGIC++

 [GeV]γ E
0 5 10 15 20 25 30 35 40

A
M

E
G

IC
Γ

 +
 d

Y
F

S
Γd

A
M

E
G

IC
Γ

 -
 d

Y
F

S
Γd  

-0.1

-0.05

0

0.05

0.1
WINDEC

PHOTONS++

Figure 2: The total photon energy in the decay frame in W → τντ . In the left panel, (a),

the distributions generated by Windec (black), Photons++ (red) and Amegic++ (green) are

depicted, where the latter has been rescaled with the true average photon multiplicity. In the

right panel, the relative deviations of Windec (black) and Photons++ (red) with respect to the

rescaled matrix element result of Amegic++ are displayed.

It should be stressed at this point, however, that there is one fundamental difference in

the comparison of the various results, related to the way the infrared cut-off is implemented:

While in Windec the energy cut-off is applied in the rest frame of the decaying W , it is

applied in the rest-frame of the decaying dipole in both Photons++ and Amegic++ .

The distributions generated by all three programs are shown in figure 2.

In general terms, the distributions agree reasonably well with each other. There is,

however, a slight deviation in the region of large radiated energies, where Windec under-

shoots the results of the two other codes on the level of up to 10%. On the other hand,

Windec exhibits an overshoot in the very low energy bins, for radiated energies around or

smaller 5GeV, which is due to the different frames in which the infrared cut-offs are applied.

As already mentioned, in Windec this is defined in the W rest frame, hence resulting in a

flat hypersurface in this frame. In contrast, in Photons++ it is applied in the rest frame

of the W -l-dipole. Subsequently the surface of the region cut off by this definition forms

a directionally dependent hypersurface in the rest frame of the W (observable in figure 3

where the cut-off is set to 1GeV). The net result is that some photons having more than

0.1GeV in this frame had less than 0.1GeV in the rest frame of the dipole, and vice versa.

Ultimately, different defintions of the infrared cut-off result in different behaviour in the

vicinity of this cut-off in nearby frames. The differences are the larger the further both

frames are apart. On the other hand, the differences at high photon energies most likely

stem from different mapping procedures in both codes. The mapping procedure in Pho-

tons++ , cf. section 3.3.2, does not involve neutral particles, in this case the neutrino. It

therefore ensures that the full phase space possible for the radiative decay can be mapped

onto the leading order one.

Another feature to study is the dependence of the distributions on the choice of the

infrared cut-off ω. It is employed to separate the divergent region of real soft photon

emission, which is exponentiated together with the virtual contributions, from the region

of the phase space where resolvable photons will be generated. Accordingly, this cut-off
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Figure 3: Dependence of the total energy of the radiated photons’ on the infrared cut-off in

Photons++ (left panel) and Windec (right panel) for W → eνe (upper panel) and W → τντ

decays (lower panel). The relative difference to ω = 0.1GeV is shown.

sets a limit on the number of photons to be generated. In figure 3 the results of this

variation on the spectrum of the radiated photons’ total energy are exhibited for two

different final states, electrons (upper panel) and τ ’s (lower panel). In the case of the

decays W → τν the two codes, Photons++ (left panel) and Windec (right panel) show

a similar behaviour: Varying the cutoffs between 1MeV and 1GeV yields stable results

in large regions and especially also in the high-energy tail of the distribution, whereas

differences appear only in the region of small energies, around 1-2 GeV. However, in the

case of the decays W → eν the differences between the two codes are more pronounced.

Varying the cutoff there yields still comparably stable results for Photons++ , but the

results of Windec show a significant dependence on the cut-off of the order of around 10%.

This is due to the fact that with decreasing fermion mass the effect of the infrared cutoff

on the avarage photon number increases.7

In order to choose an optimal value of the infrared cut-off ω there are different con-

siderations to be taken into account: On the one hand an efficient generation is desirable,

pushing ω as high as physically sensible, e.g. the detector level energy resolution on soft

photons or decay products. Along the same lines it should be noted that all photons in

7In fact, this feature was one of the reasons for preferring the τ decay channel over the electron channel.
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Figure 4: The total energy of all photons radiated in Z → ℓℓ̄. Left panel (a): The same plot as in

figure 1(b), but this time the correction is done by using the exact matrix element (solid) instead

of the approximated one (dashed). The distribution generated using the eikonals only is shown

as a dotted line. Right panel (b): The relative difference of the distributions obtained using the

exact and the approximated matrix elements. In both cases again different fermion masses have

been used.

the soft (unresolved) region will be assumed to yield a negligible combined momentum.

Therefore, choosing a comparably large infrared cut-off will not have any effect on distri-

butions involving the resolved Bremsstrahlung photons, but it will reduce the accuracy of

results obtained for e.g. invariant masses of the primary decay products. This consideration

clearly demands a smaller cut-off. On the other hand, when exponentiating the real soft

photon emission a factor
∫

d3k
k0 S̃(k)(e−iyk−1)Θ(ω−k0) has been neglected, which is strictly

true only for ω → 0. Thus, some residual dependence is to be expected, even if infrared

subtracted matrix element corrections were included to all orders. This dependence is of

course minimised with small cut-offs.

5.1.3 Effects of inclusion of exact matrix elements

Including exact matrix elements, as discussed in section 4.2, further improves the accuracy

of the distributions. This is especially true away from the singular limits, where consid-

erable differences emerge. This is exemplified in figure 6, where the angular distributions

of photons in Z → ℓℓ̄ decays is depicted. Of course, there is also an effect on the dif-

ferential decay rate. Figure 6 shows that corrections obtained from the quasi-collinear

approximation, i.e. from the approximate matrix element, overestimate the exact matrix

element resulting in an increased differential decay rate. Even more so in the region of

very hard photon emission which, due to the angular constraints imposed by the emitter’s

mass, no longer fulfils the condition (p ·k) → 0. Here the full matrix element exhibits some

destructive interference between the two relevant diagrams which is of course absent in the

treatment through the dipole splitting kernels. This leads to a slightly earlier drop-off of the

differential decay rate w.r.t. radiated energy than with the approximated matrix elements.

Further, the absence of interference terms in both the eikonals and the quasi-collinear

approximation leads to an overestimation of radiation at large angles. Because of only small

correlations between the energy of the photon radiated and its angular distribution this
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Figure 5: The total energy of all photons radiated in W → ℓν. Left panel (a): The same plot as in

figure 1(d), but this time the correction is done by using the exact matrix element (solid) instead

of the approximated one (dashed). The distribution generated using the eikonals only is shown

as a dotted line. Right panel (b): The relative difference of the distributions obtained using the

exact and the approximated matrix elements. In both cases again different fermion masses have

been used.
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Figure 6: Angular distributions of the emitted photons in Z → ℓℓ̄, using exact and approximated

matrix elements. In the left panel (a) and the right panel (b), the cases Z → ee and Z →
ττ are exhibited using the eikonals only (dotted lines) and corrections through exact (solid) and

approximated matrix elements (dashed). In both plots the leptons sit at θ = 0 and θ = π.

overestimation leads to an almost constant decline in the differential decay rate w.r.t. the

photon energy when corrected by the exact matrix element. Of course, while this effect is

small in the decay channel Z → e+e−, it increases with the mass of the emitter and when

a larger fraction of the radiation is radiated at large angles. Nevertheless, for very high

emitter masses (cf. the fictive τ with mτ = 40GeV in figure 4) the approximation proves

useful again. This is due to the dominance of the soft logarithms over the quasi-collinear

ones in this limit.

5.2 Other channels

Finally, a short overview over other interesting cases is given. In principle, Photons++

can handle any possible final state configuration in single particle decays independent of

its charge. Thus, it is well suited to address all τ - and hadron decays, which will be the

topic of this section.
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Figure 7: The total energy of the radaited photons in the rest frame of the decaying J/ψ vector

meson for different lepton pairs (electrons in red, muons in green) in the final state. C = 1 (dotted)

is contrasted with C = 1 + β̃1
1/β̃

0
0 , where β̃1

1 is calculated in the quasi-collinear approximation

(dashed) and with the complete real emission matrix element (solid). In all cases, the distributions

are normalised on the width of the inclusive decay into the respective lepton pair, and the infrared

cut-off has been fixed to ω = 1MeV.

5.2.1 J/Ψ decays to leptons

First of all, consider the case of J/Ψ → ℓℓ̄, which is topologically identical to leptonic Z-

decay, but nonetheless very important for the calibration of detectors and as a background

source of leptons. In figure 7 the decay channels J/ψ → e+e− and J/ψ → µ+µ− are

investigated and the effect of O(α) corrections is scrutinised. Again, the kinematic limit

at half the mass of the decaying particle produces a visible and prominent kink. Due to

the much smaller mass of the J/ψ compared to the Z mass, the effects of the higher muon

mass are much more pronounced, both in the sharpness of the kink and the quality of the

quasi-collinear approximation.

5.2.2 B → D∗+ pions and semileptonic B decays

Another system to demonstrate the versatility of Photons++ are B-decays because of its

manyfold topologies in the final state.

In figure 8 semi-leptonic decays of B0 mesons into D− scalars and D∗− vectors are

displayed. The resulting distributions are similar for e or µ being the lepton. This is

because in both cases the bulk of the radiation is emitted off the lepton and the amount

of phase space open for bremsstrahlung is of similar magnitude. Only the avarage photon

multiplicity is noticably affected by the difference in mass between the electron and the

muon. The τ -channel on the other hand presents itself differently due to the mass of the

tau being comparable both to the mass of the B0- and the D(∗)−-mesons. This not only

leads to the near absence of soft bremsstrahlung above the infrared cut-off, as compared to

the other semi-leptonic channels, it also results in a completely different radiation pattern:

The bulk of the photons is radiated in between both dipole particles and not primarily

collinearly. Furthermore, the absence of interference terms in the radiation off the lepton-

scalar pair in contrast to the lepton-vector pair is plainly visible for both e and µ. Again,

the relevance of the interference terms is small for the τ -mode due to its radiation being
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Figure 8: Semi-leptonic decays B0 → D−ℓν and B0 → D∗(2010)−ℓν for different leptons and

with different matrix element corrections. The solid line corresponds to the correction using the

full matrix elements in the point-like hadron approximation, the dashed line corresponds to the

dipole splitting kernels neglecting interference terms and the dotted line corresponds to using the

eikonals only. The angular distributions are shown in the ℓ −D(∗)− rest frame with the lepton at

θ = 0. Again, the infrared cut-off was set to 1MeV.

dominated by the spin-independent soft terms. The exact matrix element correction also

shows the shortcomings of the dipole splitting functions in this case as they fail to predict

the excess of hard radiation for the eletron. This attribute is shielded in the muon case

by its already comparable large mass. However, the total radiative decay rate is nearly

uneffected by this. The spin-dependence of the dipole approximation is also suppressed by

the large mass of the D− and D∗−, respectively, hence the small difference of both cases

in that approximation.

As an example for dealing with multiple charged particles in the final state, B0 decays

into a D∗ accompanied with various numbers of charged and neutral π’s have been chosen.

The results are on display in figure 9, where the total radiated photon energy and the

angular distribution of the photons are depicted. The orientation of the final state momenta

has been chosen in such a way that configurations of the same multipole structure differing

only by a neutral pion have a similar momentum distribution within the multipole, but still

letting the π0 have a non-vanishing effect. The most prominent feature in the distriubtion

of the total energy of all photons in the B meson’s rest frame is the receding kinematic limit
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Figure 9: The total photon energy in the rest frame of the decaying B0 meson for different

numbers of pions in the final state (upper plot) and the angular distribution of this radiation in

the multipole rest frame with the D∗− at θ = 0 (lower panel). For the multi-body final states the

same kinematic configurations have been used, as detailed in the text, to yield easily interpretable

results. For identical multipoles similar final state momentum configurations with non-vanishing π0

momentum have been chosen to increase comparability. The infrared cut-off in all cases has been

set to ω = 1MeV.

for the total energy, it is independent of the momentum layout within the multipole. It is

due to the decreasing amount of phase space open for bremsstrahlung with an increasing

number of pions. On the other hand, while the total energy available for the photon

decreases, the amount of Bremsstrahlung increases with the number of charged particles

involved. Switching from a dipole (two charged particles) to a quadrupole (four charged

particles), the probability of double hard photon emission is increased due to favourable

momentum configurations among the strongly radiating pions. Additionally, since the

pions are spin-0, their photon distribution is generated exclusively by a product of eikonal

factors. Furthermore, the angular distributions of the emitted photons are shown. There,

the differential cross-section is integrated over energy and the azimutal angle. For better

interpretability these distributions are plotted in the rest frame of the multipole. The

D∗(2010)− allways rests at θ = 0. Due to its large mass, compared to the pions, very little

radiation is emitted in its direction. In contrast, all charged pions are plainly visible as

peaks in the spectrum. However, their respective mass cones are hidden due to the azimutal

integration unless the pion sits at θ = π, as is the case in the dipole configurations.
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Figure 10: The total photon energy in ∆++ → p+π+ in the rest frame of the decaying ∆++

baryon is exhibited. The infrared cut-off was set to 1keV.
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Figure 11: The total photon energy in τ− → ℓ− ν̄ℓ ντ in the rest frame of the decaying τ lepton

is shown in the left panel. In the right panel the distribution of the photons’ polar angle is shown

in the τ − ℓ rest frame with the τ at θ = 0. In both plots, the solid line shows the distribution

corrected with the exact matrix element and the dotted line the one using the eikonals only. The

infrared cut-off was set to 1MeV.

5.2.3 ∆++ → p+ π+ decays

A rather exotic decay for the purpose of this publication is the decay ∆++ → p+ π+, due

to its lack of neutral particles. This case is presented in figure 10, where the total energy

and the angular distribution of the emitted photons are exhibted. However, this channel

leaves only very little phase space open for photon radiation. Thus, collinear enhancement

for the p+ and the ∆++ should be negligible.

5.2.4 τ decays

The leptonic τ decays are an example of a final state containing multiple neutral and

massless particles. This has the effect that the leading order decays do not have a fixed

momentum distribution among the primary decay products leading to a smearing out of

the sharp kink at 1
2mτ , as depicted in figure 11. Because of the relatively small τ -mass and

the considerable fraction of momentum carried by the neutrinos the effects of the different
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Γ(µ→eνeνµγ)
Γ(µ→eνeνµ,incl.)

Γ(τ→eνeντ γ)
Γ(τ→eνeντ ,incl.)

Γ(τ→µνµντγ)
Γ(τ→µνµντ ,incl.)

PDG 0.014(4) 0.09(1) 0.021(3)

Photons++ 0.0147(1) 0.0999(3) 0.0233(2)

Table 2: A comparison of the branching ratios of the radiative leptonic µ and τ decay mode (Eγ >

10MeV) in relation to their inclusive leptonic mode calculated by Photons++ and the PDG world

avarage. The number in brackets reflects the absolute error on the last digit.

masses of the electron and the muon are plainly visible, in the photon energy spectrum as

well as the angular distribution.

Furthermore, the branching fraction of radiative leptonic decays in µ and τ decays

(with at least one photon with Eγ > 10MeV) has been checked against PDG values [25],

cf. table 2.

6. Conclusions and outlook

In this publication a new implementation of the YFS approach to the description of higher-

order QED corrections in particle processes has been presented in the form of a Monte Carlo

code. It is a part of the multi-purpose event generation framework Sherpa since version

1.1 and allows for a simulation of photon radiation in particle decays. This is an important

effect with important experimental consequences. The huge advantage of the YFS approach

is that it can be systematically improved order-by-order in the electromagnetic coupling

constant, such that its accuracy can be increased to match exact results at in principle

any given perturbative order. Thus, in terms of possible accuracy, the YFS approach

clearly reaches beyond typical parton-shower based algorithms. Some of the effects due the

inclusion of exact perturbative results have been studied in this publication.

In contrast to another recent implementation of the YFS approach in Sophty , here,

in Photons++ , there is no constraint in the number of particles produced in the decay,

i.e. Photons++ stretches beyond the level of 1 → 2 decays. This is possible due to a new

method of reconstructing the kinematics after QED radiation has been added to a core

process, thus shifting its characteristics a posteriori. The corresponding algorithms have

been tested and validated in detail through comparison with results from other codes and

experimental data. Some of the results have also been presented in this paper.

It is anticipated that in the progress of the further development of Sherpa also its

modules will be improved; in the case of Photons++ this will mainly involve the addition

of an increasing number of exact higher order results. Some of the most relevant 1 → 2, such

as generic V → FF matrix elements with adjustable couplings, cf. section 4.1, S → FF

and S → SS, as well as more dedicated W → ℓν, τ → ℓνℓντ , S → Sℓν and S → V ℓν are

already present. Others will need to be added. The structure of the code also permits the

inclusion of form-factors to take into account the composite nature of hadrons.
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A. The YFS-form-factor

In this appendix, the cancellation of virtual and real soft singularities will explicitly be

performed and the YFS-Form-Factor will be calculated. As already defined in sections 2

and 3 the YFS-Form-Factor Y (Ω) reads

Y (Ω) = 2α
∑

i<j

(

Re B(pi, pj) + B̃(pi, pj ,Ω)
)

,

where the virtual infrared factor is given by

B(pi, pj) = − i

8π3
ZiZjθiθj

∫

d4k

k2

(

2piθi − k

k2 − 2(k · pi)θi
+

2pjθj + k

k2 + 2(k · pj)θj

)2

and the real infrared factor reads

B̃(pi, pj ,Ω) =
1

4π2
ZiZjθiθj

∫

d4k δ(k2) (1 − Θ(k,Ω))

(

pi

(pi · k)
− pj

(pj · k)

)2

.

As before, Zi and Zj are the charges of particles i and j in units of the positron charge,

respectively, and the sign factors θi,j = ±1 for final (initial) state particles. Again, Ω is the

“unresolved” region of the phase space for the soft photons. In this form the divergences

need to be regularised, which can be achieved by either introducng a ficititous small pho-

ton mass λ, as in the original YFS paper [8], or through dimensional regularisation. In

both cases, however, the limited real emission phase space Ω will lead to potentially large

logarithms.

After performing the momentum integration, the virtual infrared factor can be

written as

B(pi, pj) = −ZiZjθiθj

2π



ln
mimj

λ2
+

1

2
(pi · pj)θiθj

1
∫

−1

dx
ln p′2x

λ2

p′2x
+

1

4

1
∫

−1

dx ln
p′2x

mimj



 ,

where

p′x =
(piθi − pjθj) + x(piθi + pjθj)

2
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and

− lnλ2 =
1

ǫ
− ln µ̃2

contains the infrared divergence. Similarly, the real infrared factor reads

B̃(pi, pj , ω) =
ZiZjθiθj

2π



ln
ω2

λ2
+ ln

mimj

EiEj
− 1

2
(pi · pj)

1
∫

−1

dx
ln p2

x

λ2

p2
x

+
1

2
(pi · pj)

1
∫

−1

dx
ln E2

x

ω2

p2
x

− G̃(1) − G̃(−1) + (p1 · p2)

1
∫

−1

dx
G̃(x)

p2
x



 ,

with

px =
(pi + pj) + x(pi − pj)

2

and ω is the momentum cut-off specifying Ω in the frame B̃ is to be evaluated in.

Furthermore,

G̃(x) =
1 − βx

2βx
ln

1 + βx

1 − βx
+ ln

1 + βx

2
.

with

βx =
|~px|
p0

x

=

√

(~pi + ~pj)2 + 2x(~p2
i − ~p2

j) + x2(~pi − ~pj)2

(Ei + Ej) + x(Ei − Ej)
.

Combining both terms to the YFS-Form-Factor the divergences cancel and a finite

result is obtained. The remaining parameter integrals do not give rise to further divergences

as long as p2
i , p

2
j > 0, i.e. as long as the emitting particles are massive. Thus, taken together,

the YFS form factor reads

Y (pi, pj , ω) = −α
π
ZiZjθiθj



ln
EiEj

ω2
− 1

2
(pi · pj)

1
∫

−1

dx
ln E2

x

ω2

p2
x

+
1

4

1
∫

−1

dx ln
p′2x

mimj

+
1

2
(pi · pj)Θ(θiθj)





8π2Θ(x′1x
′
2)

(x′2 − x′1)(pi + pj)2
+

1
∫

−1

dx
lnx2

p2
x





+ G̃(1) + G̃(−1) − (pi · pj)

1
∫

−1

dx
G̃(x)

p2
x



 ,

where x′1,2 are the roots of p′2x with x′1 < x′2. The general case cannot be evaluated in closed

form. This is due to the fact that the term
1
∫

−1

dx
G̃(x)

p2
x

,

although completely finite, can only be evaluated analytically for the dipole in its rest

frame or in the rest frame of one of either of its constituent particles. This can only be

achieved if there is one dipole only. All other cases need to be evaluated numerically.
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A.1 Special cases

A.1.1 Decay into two particles with (piθi + pjθj)
2 < 0

If the multipole consists of only two particles in the final state, e.g. for decays of the type

Z → ℓℓ̄, then there is an analytical solution in the rest frame of the dipole formed by the

two charged particles. In the high-energy limit, given by Ei ≫ mi for both QED corrected

charged particles, the critical term above can be written as

(pi · pj)

1
∫

−1

dx
G̃(x)

p2
x

∼= 1

6
π2 .

Therefore, in this case, the full YFS form factor reads

Y (pi, pj , ω) ∼= −α
π
ZiZjθiθj

[(

1 − ln
2(pi · pj)

mimj

)

ln
EiEj

ω2
+ ln

Ei

Ej
ln
mi

mj
− 1

2
ln2 Ei

Ej

+
1

2
ln

(piθi + pjθj)
2

mimj
− 1 − π2

6

]

.

This result in the high-energy limit agrees with the result stated in [8].

A.1.2 Decay of a charged particle with one charged final state with

(piθi + pjθj)
2 = 0

A similar, but nonetheless different case occurs for the decay of a charged particle into a

final state involving only one charged particle, e.g. the case of W -decays, W → ℓνℓ. Then,

in the corresponding dipole’s rest frame neither mW ≪ EW nor (piθi + pjθj)
2 < 0 and

therefore this case is different from the one above. In this case, for (pW − pl)
2 = 0,

YW(ω) =
α

π

[

2

(

1 − ln
mW

ml

)

ln
mW

ω
√

8
+ ln

mW

ml

− 1

2
+

3

2
ln 2 − 3

12
π2

]

.

This result of course differs from the result in [24] since both results are given in different

Lorentz-frames. Also, if in this process a photon is radiated, then (pW −pl)
2 = 2(pν ·pγ) > 0

and the YFS-Form-Factor takes a different a form.

A.2 The full YFS form factor

Here the complete solutions to analytically integrable parameter integrals in the YFS form

factor are given. In the following, using the invariance of Y (Ω) under the interchange of

pi ↔ pj, the labels pi and pj are chosen such that Ej ≥ Ei. It is useful to define

x1,2 = −
p2

i − p2
j ± 2

√

(pi · pj)2 − p2
i p

2
j

(pi − pj)2

as the roots of p2
x and

x′1,2 = −
p2

i − p2
j ± 2

√

(pi · pj)2 − p2
i p

2
j

(pi + pj)2
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as those of p′2x in case of θiθj = +1, satisfying x1,2 /∈ [−1, 1] and x′1,2 ∈ (−1, 1), respectively.

It holds that x1, x
′
2 > 0 and x2, x

′
1 < 0 if (pi − pj)

2 < 0 and 0 < x1 < x2 and 0 < x′1 < x′2
if (pi − pj)

2 > 0. These difference in the relations between x1 and x2 necessitate the

differentiation of distinct cases in the calculations.

If (pi − pj)
2 = 0 then x1,2 are not defined. If θiθj = −1 then p′2x = p2

x and x′1,2 are

meaningless, leading to another set of distinct cases.

When evaluating the first set of the parameter integrals that fact simplifies matters a

lot resulting in

Re



θiθj

1
∫

−1

dx
ln p′2x

λ2

p′2x
+

1
∫

−1

dx
ln p2

x

λ2

p2
x





θiθj=−1
= 0 .

Otherwise, the evaluation is more complicated and involves shifting the poles at x′1,2 off

the real axis. The solution then is

Re



θiθj

1
∫

−1

dx
ln p′2x

λ2

p′2x
+

1
∫

−1

dx
ln p2

x

λ2

p2
x





=
8π2Θ (x′1x

′
2)

(x′2−x′1)(pi + pj)2
+

8

(x1−x2)(pi−pj)2

[

ln |x1|
(

Li2

(

x1−1

x1

)

−Li2

(

x1+1

x1

))

− ln |x2|
(

Li2

(

x2−1

x2

)

−Li2

(

x2+1

x2

))]

.

In any case, the last piece of the divergence has cancelled, leaving finite terms negligible in

the high energy limit.

The other integral containing p′2x is to be evaluated next. In total there are three cases

to consider.

• θiθj = +1

Re





1
∫

−1

dx ln
p′2x

mimj





= 2 ln
(pi+pj)

2

4mimj
+ln

[

(1 − x′21 )(1−x′22 )
]

−x′1 ln

∣

∣

∣

∣

1−x′1
1+x′1

∣

∣

∣

∣

−x′2 ln

∣

∣

∣

∣

1−x′2
1+x′2

∣

∣

∣

∣

− 4 .

Allthough, there again are poles within the range of integration the integral over

them is finite.

• θiθj = −1. The range of integration does not comprise any poles and, thus, is real,

giving

1
∫

−1

dx ln
p2

x

mimj

= 2 ln
|(pi−pj)

2|
4mimj

+ln
[

(1 − x2
1)(1 − x2

2)
]

+x1 ln

∣

∣

∣

∣

1 + x1

1 − x1

∣

∣

∣

∣

+x2 ln

∣

∣

∣

∣

1 + x2

1 − x2

∣

∣

∣

∣

−4 .
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Evidently, the case (pi − pj)
2 = 0 has to be treated separately. It yields

1
∫

−1

dx ln
p2

x

mimj
= 2 ln

|p2
i − p2

j |
2mimj

+ ln |1 − x2
p| + xp ln

∣

∣

∣

∣

1 + xp

1 − xp

∣

∣

∣

∣

− 2 .

where xp = −p2
i +p2

j

p2
i−p2

j

. In decay matrix elements it is not kinematically possible to also

have mi = mj.

The last integral that is generally solveable analytically differentiates even more cases.

The easiest to solve is the case of Ei = Ej, as it is occuring in leptonic Z-decays. Here, Ex

is independent of x, thus giving

1
∫

−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2
ln
Ei +Ej

2ω
ln

∣

∣

∣

∣

(1 − x1)(1 + x2)

(1 + x1)(1 − x2)

∣

∣

∣

∣

.

For all other dipoles three distinct cases appear:

• (pi − pj)
2 < 0

1
∫

−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2

[

ln
Ei

ω
ln

∣

∣

∣

∣

1 − x1

1 + x1

∣

∣

∣

∣

+ ln |y1| ln
∣

∣

∣

∣

1 − x1

1 + x1

∣

∣

∣

∣

− ln
(1 + x2)Ei + (1 − x2)Ej

2ω
ln

∣

∣

∣

∣

1 − x2

1 + x2

∣

∣

∣

∣

+ Li2

(

−ζ(1 + x1)

y1

)

− Li2

(

ζ(1 − x1)

y1

)

− Li2

(

− 1 + x2

xE − x2

)

+ Li2

(

1 − x2

xE − x2

) ]

with y1 = 1 + ζ(1 − x1), ζ = −Ei−Ej

2Ei
and xE = −Ei+Ej

Ei−Ej
.

• (pi − pj)
2 > 0

1
∫

−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2

[

ln
Ei

ω
ln

∣

∣

∣

∣

1 − x1

1 + x1

∣

∣

∣

∣

+ ln |y1| ln
∣

∣

∣

∣

1 − x1

1 + x1

∣

∣

∣

∣

(A.1)

+
1

2
ln2

∣

∣

∣

∣

y2

ξ(1+x2)

∣

∣

∣

∣

− 1

2
ln2

∣

∣

∣

∣

y2

ξ(1−x2)

∣

∣

∣

∣

−ln
Ej

ω
ln

∣

∣

∣

∣

1−x2

1+x2

∣

∣

∣

∣

+ ln |y2| ln
∣

∣

∣

∣

1−x2

1+x2

∣

∣

∣

∣

+ Li2

(

−ζ(1+x1)

y1

)

−Li2

(

ζ(1−x1)

y1

)

−Li2

(

− y2

ξ(1−x2)

)

+Li2

(

y2

ξ(1+x2)

)]

with y2 = 1 + ξ(1 + x2) and ξ =
Ei−Ej

2Ej
.
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• (pi − pj)
2 = 0

With the definitions for xE and xp from above it allways holds that xE > xp > 1, thus

1
∫

−1

dx
ln E2

x

ω2

p2
x

=
4

p2
j − p2

i

[

ln
Ej − Ei

2ω
ln

∣

∣

∣

∣

1 + xp

1 − xp

∣

∣

∣

∣

+ ln(xE − xp) ln

∣

∣

∣

∣

1 + xp

1 − xp

∣

∣

∣

∣

+ Li2

(

xp − 1

xp − xE

)

− Li2

(

xp + 1

xp − xE

) ]

The last integral can generally only be solved numerically. This is due to the complexity

of βx. If, however, the dipole is in its rest frame or in the rest frame of one of its constituents,

there are analytical solutions. Because Photons++ allways treats multipoles in their rest

frames solutions for the integral will only be given in that frame. Two important cases are:

• mi = mj

1
∫

−1

dx
G̃(x)

p2
x

=
1

βE2

[

1

2
ln2 1 + β

2
+ ln 2 ln(1 + β) − 1

2
ln2 2 − 1

2
ln2(1 + β)

+ Li2

(

1 − β

2

)

− Li2

(

1 + β

2

)

+ Li2 (β) − Li2 (−β)

]

with β = |~pi|
Ei

=
|~pj |
Ej

and E = Ei = Ej.

• Leptonic W -decay (mi ≪ mj = mW )

1
∫

−1

dx
G̃(x)

p2
x

∼= 2

m2
j

[

3

12
π2 + Li2 (−2)

]

.

B. Transforming the phase space elements

This section details the phase space manipulations neccessary for the implementation of

the YFS algorithm in form of a computer code.

B.1 Rewriting the phase space element in other frames

As discussed in section 3.2, the phase space integral with the phase space element

dΦ = dΦp dΦk (2π)4δ (pC + pN − PC − PN −K)

=
n
∏

i=1

[

d3pi

(2π)32p0
i

] nγ
∏

i=1

[

d3k

k0

]

(2π)4δ (pC + pN − PC − PN −K) ,

has to be transformed to explicitely be in the chosen frame, the multipole rest frame. This

can be achieved by using the identities

1 =
2

M2

∫

d4(pC + pN ) d4PC dm2
M,p δ

(

1

M
(~pC + ~pN )

)

δ((pC + pN )2 −M2)

× δ4
(

PC + PN −
∑

pi

)

δ((pC + PC)2 −m2
M,p)Θ

(

(pC + pN )0
)

.
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and

1 =
2

m4
M,p

∫

d4x δ

(

x2

m2
M,p

− 1

)

δ3
(

1

mM,p
L−1(pC + PC)

)

. (B.1)

Here, mM,p is the invariant mass of PM = pC +PC and M is the invariant mass of the

initial state pC + pN . As before, pC and pN and PC and PN are the sums of the initial and

final state charged and neutral particles’ momenta. The first identity basically amounts to

extending the integration to an integration over the full phase space including the initial

particles. The second identity, taken from [26], involves a Lorentz-transformation, denoted

by L−1, being the boost into the rest frame of x. Applying this boost on the phase space

integral of course is a valid operation, since the full expression at this point is formulated

in a Lorentz-invariant way. The result of this Lorentz-transformation, after inserting both

identities, reads

dΦ = (2π)4dΦpdΦk

∫

d4(pC + pN ) d4PC dm2
M,p d4x

2

M2

2

m4
M,p

δ4(pC +pN−PC−PN −K)

× δ3 (L(pC + pN )) δ((pC + pN )2 −M2) δ4
(

PC + PN −
∑

pi

)

× δ((pC + PC)2 −m2
M,p)Θ

(

(pC + pN )0
)

× δ

(

x2

m2
M,p

− 1

)

δ3
(

1

mM,p
(~pC + ~PC)

)

.

Reordering and using the identity

δ

(

x2

m2
M,p

− 1

)

=

∫

dM2δ

(

x2

M2
− 1

)

δ(M2 −m2
M,p)

yields

dΦ = (2π)4dΦpdΦk

∫

d4(pC + pN ) d4PC dm2
M,p

2

M2

2

mM,p
δ((pC + pN )2 −M2)

× δ3(~pC + ~PC) δ4(pC + pN − PC − PN −K) δ4
(

PC + PN −
∑

pi

)

× δ((pC + PC)2 −m2
M,p)Θ

(

(pC + pN )0
)

×
∫

d4xdM2 δ

(

x2

m2
M,p

− 1

)

δ3
(

1

M
L(pC + pN )

)

δ(M2 −m2
M,p) .

The last line can be further simplified by using the identity of eq. (B.1) again and by

integrating over M2. Now, the other integrations can be performed, first over (p + pN ),

then over P and finally over m2
M,p. This results in

dΦ = (2π)4dΦpdΦk

2m3
M,p

M2
δ3
(

2
∑

~pi − ~PN + ~K − ~pN

)

δ

(

(

∑

pi +K
)2

−M2

)

,

where m2
M,p = (pC + PC)2 = (2

∑

pi − PN +K − pN )2 = P 2
M is the invariant mass of the

QED-corrected multipole.
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Finally, the identity

δ

(

(

∑

pi +K
)2

−M2

)

=
1

2(P 0
C + P 0

N +K0)
δ(P 0

M − P 0
M,0)

will be used, where P 0
M,0 = P 0

C + p0
C = mM,p and where all zero-components are taken in

the rest frame of PM = pC + PC . Therefore,

dΦ = (2π)4
m3

M,p

M2(P 0
C + P 0

N +K0)
dΦp dΦk δ

3(~PM ) δ
(

P 0
M − P 0

C − p0
C

)

.

The phase space element dΦ has thus been explicitely rewritten in the rest frame of the

multipole, at the cost of a Jacobian.

Similarily, the zeroth order uncorrected cross section can be transformed to

dΦ0 = (2π)4dΦq δ
4 (pC + pN −QC −QN )

= (2π)4
m3

M,q

M2(Q0
C +Q0

N )
dΦq δ

3( ~QM ) δ
(

Q0
M −Q0

C − p0
C

)

.

where mM,q is the invariant mass of the uncorrected multipole and the Q0
C and Q0

N are

taken in the QM rest frame.

B.2 Rewriting the phase space element in terms of the undressed momenta

In both cases the manipulations can be done in close analogy to the unitary algorithm

of [27]. The neccessary manipulations are easiest done backwards, starting with the phase

space integral in terms of the qi and defining n = nC + nN to be the number of final state

particles.

B.2.1 Mixed multipoles

In this case the starting point reads

∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C − p0
C)

=

∫ n
∏

i=1

[

d4qi δ
(

q2i −m2
i

)

Θ(q0i )
]

δ3

(

∑

C

~qi + ~pC

)

δ

(

Q0
M −

∑

C

q0i − p0
C

)

.

This can be recast into a better form by inserting the identity

1 =

∫ n
∏

i=1

[

d4pi δ
3

(

~pi − u~qi +
1

2nC + nN

~K

)

δ

(

p0
i −

√

~p2
i +m2

i

)]

=

∫ n
∏

i=1

[

d4pi δ
3 (~pi − u~qi + ~κ) δ

(

p0
i −

√

~p2
i +m2

i

)]

(B.2)

with the abbreviation

~κ =
~K

2nC + nN
,
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by using the definition of u written as

1 =

∫

du δ





√

√

√

√M2 +

(

u
∑

C

~qi − nC~κ

)2

−
∑

C,N

√

m2
i + (u~qi − ~κ)2 −K0









~p′C~pC

p′0C
−
∑

C,N

~pi~qi
p0

i



 (B.3)

and by expressing the δ-function fixing Q0
M in terms of the kinematically relevant variables

q0i and p0
C . This then yields

∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C − p0
C)

=

∫

du
n
∏

i=1

[

d4qi d
4pi δ

(

q2i −m2
i

)

Θ(q0i ) δ
3 (~pi − u~qi + ~κ) δ

(

p0
i −

√

~p2
i +m2

i

)]

× δ





√

√

√

√M2 +

(

u
∑

C

~qi − nC~κ

)2

−
∑

C,N

√

m2
i + (u~qi − ~κ)2 −K0





×δ3
(

∑

C

~qi + ~pC

)

δ





√

√

√

√M2 +

(

∑

C

~qi

)2

−
∑

C,N

q0i



×





~p′C~pC

p′0C
−
∑

C,N

~pi~qi
p0

i



 .

Integrating over d3qi and dq0i , using δ
(

x2 − x2
0

)

Θ(x) = 1
2x0

δ(x− x0), and integrating over

u yields

∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C − p0
C)

=

∫

du

n
∏

i=1



d4piδ

(

p0
i −

√

~p2
i +m2

i

)

1

u3

1

2
√

1
u2 (~pi + ~κ)2 +m2

i





× δ3

(

1

u

[

∑

C

~pi + nC~κ+ u~pC

])

× δ





√

√

√

√M2 +
1

u2

[

∑

C

~pi + nC~κ

]2

−
∑

C,N

√

m2
i +

1

u2
[~pi + ~κ]2





× δ





√

√

√

√M2 +

[

∑

C

~pi

]2

−
∑

C,N

√

m2
i + ~p2

i −K0



×





~p′C~pC

p′0C
−
∑

C,N

~pi (~pi + ~κ)

up0
i



 .
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=

∫ n
∏

i=1



d4piδ

(

p0
i −

√

~p2
i +m2

i

)

1

u3

1

2
√

1
u2 (~pi + ~κ)2 +m2

i





×u3δ3

(

∑

C

~pi + ~p′C

)

δ





√

√

√

√M2 +

[

∑

C

~pi

]2

−
∑

C,N

√

m2
i + ~p2

i −K0





×





~p′C~pC

p′0C
−
∑

C,N

~pi (~pi + ~κ)

up0
i









u
~p2

C

p0
C

−∑C,N
~q2
i

q0
i



 ,

where in the integration over u the second last δ-function of the line above has been used.

Furthermore, in this transformation, an identity similar to (B.3), arising when defining u

in terms of pi, has been employed. A rearrangement of terms and a suitable transformation

of the last δ-function in terms of PM yields

∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C − p0
C)

=

∫ n
∏

i=1



d4piδ
(

p2
i −m2

i

)

Θ(p0
i )

1

u3

√

~p2
i +m2

i
√

1
u2 (~pi + ~κ)2 +m2

i





×u4δ3

(

∑

C

~pi + ~p′C

)

δ
(

p′0C − P 0
C − P 0

N −K0
)

~p′C~pC

p′0
C

−∑C,N
~pi~qi

p0
i

~p2
C

p0
C

−∑C,N
~q2
i

q0
i

=

∫ n
∏

i=1

[

d4piδ
(

p2
i −m2

i

)

Θ(p0
i )
]

δ3
(

~PM

)

δ
(

P 0
M − P 0

C − p′0C
)

× 1

u3n−4

~p′C~pC

p′0
C

−
∑

C,N
~pi~qi

p0
i

~p2
C

p0
C

−∑C,N
~q2
i

q0
i

n
∏

i=1

[

p0
i

q0i

]

.

Here, the identity

q0i =

√

1

u2
(~pi + ~κ)2 +m2

i

has been used. Reversing the procedure allows to express the phase space element through

the undressed final state momenta as

dΦ = (2π)4dΦqdΦkδ
3
(

~QM

)

δ
(

Q0
M −Q0

C − p0
C

) m3
M

M2
(

P 0
C + P 0

N +K0
)

×u3n−4

~p2
C

p0
C

−∑C,N
~q2
i

q0
i

~p′
C

~pC

p′0
C

−
∑

C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

.
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B.2.2 Final state multipoles

The transformation will be done using the same techniques as above. Starting from
∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C)

=

∫ n
∏

i=1

[

d4qiδ(q
2
i −m2

i )Θ(q0i )
]

δ3

(

∑

C

~qi

)

δ

(

Q0
M −

∑

C

q0i

)

.

Again, similar identities to (B.2) and (B.3) will be used, but due to the different mapping

scheme they now read

1 =

∫ n
∏

i=1

[

d4pi δ
3(~pi − u~qi) δ

(

p0
i −

√

~pi
2 +m2

i

)]

(B.4)

and

1 =

∫

du δ





√

√

√

√M2+

(

u
∑

N

~qi+ ~K

)2

−
∑

C.N

√

m2
i + u2~q2i −K0









~p′N~pN

p′0N
−
∑

C,N

~pi~qi
p0

i



 .(B.5)

And, as before, the δ-function over Q0
M is expressed in the kinematically relevant variables

q0i . This then yields

∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C)

=

∫

du
n
∏

i=1

[

d4qid
4pi δ(q

2
i −m2

i )Θ(q0i ) δ
3(~pi − u~qi) δ

(

p0
i −

√

~pi
2 +m2

i

)]

× δ





√

√

√

√M2 +

(

u
∑

N

~qi + ~K

)2

−
∑

C,N

√

m2
i + u2~q2i −K0





× δ3

(

∑

C

~qi

)

δ





√

√

√

√M2 +

(

∑

N

~qi

)2

−
∑

C,N

q0i



×





~p′N~pN

p′0N
−
∑

C,N

~pi~qi
p0

i



 .

Integrating over d4qi and u yields
∫ n
∏

i=1

d3qi
2q0i

δ3( ~QM )δ(Q0
M −Q0

C)

=

∫

du

n
∏

i=1



d4piδ

(

p0
i −

√

~pi
2 +m2

i

)

1

u3

1

2
√

1
u2 ~pi

2 +m2
i



 δ3

(

1

u

∑

C

~pi

)

× δ





√

√

√

√M2 +
1

u2

[

∑

N

~pi

]2

−
∑

C,N

√

1

u2
~pi

2 +m2
i





× δ





√

√

√

√M2 +

[

∑

N

~pi + ~K

]2

−
∑

C,N

√

m2
i + ~p2

i −K0



×





~p′~p

p′0
−
∑

C,N

~p2
i

up0
i




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=

∫ n
∏

i=1



d4piδ(p
2
i −m2

i )Θ(p0
i )

1

u3

√

~pi
2 +m2

i
√

1
u2 ~pi

2 +m2
i



 u3 δ3

(

∑

C

~pi

)

× δ





√

√

√

√M2 +

[

∑

N

~pi + ~K

]2

−
∑

C,N

√

m2
i + ~p2

i −K0





×





~p′~p

p′0
−
∑

C,N

~p2
i

up0
i









u

~p2

p0 −∑C,N
~q2
i

q0
i





where, again, the second last δ-function has been used in the integration over u. Addi-

tionally, an identity similar to (B.5), arising when defining u in terms of pi, has been used.

Rearranging terms leads to

∫ n
∏

i=1

d3qi
2q0i

δ3(~QM )δ(Q0
M −Q0

C)

=

∫ n
∏

i=1



d4pi δ(p
2
i −m2

i )Θ(p0
i )

1

u3

√

~pi
2 +m2

i
√

1
u2 ~pi

2 +m2
i





×u4 δ3(~PC) δ
(

p′0N − P 0
C − P 0

N −K0
)

~p′N ~pN

p′0
N

−
∑

C,N
~pi~qi

p0
i

~p2
N

p0
N

−∑C,N
~q2
i

q0
i

=

∫ n
∏

i=1

[

d4pi δ(p
2
i −m2

i )Θ(p0
i )
]

δ3( ~PM ) δ(P 0
M −P 0

C)
1

u3n−4

~p′
N

~pN

p′0
N

−∑C,N
~pi~qi

p0
i

~p2
N

p0
N

−
∑

C,N
~q2
i

q0
i

n
∏

i=1

[

p0
i

q0i

]

where the identity

q0i =

√

1

u2
~p2

i +m2
i

has been used. Reversing the procedure allows to express the phase space element through

the undressed final state momenta as

dΦ = dΦq dΦk (2π)4 δ3( ~QM ) δ(Q0
M −Q0

C)
m3

M

M2(P 0 + P 0
N +K0)

×u3n−4

~p2
N

p0
N

−∑C,N
~q2
i

q0
i

~p′
N

~pN

p′0
N

−∑C,N
~pi~qi

p0
i

n
∏

i=1

[

q0i
p0

i

]

.

C. Details on the photon generation

In this section the generation of the photon distribution is detailed.
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Figure 12: Sketch of how the axes are chosen in the angular integration in multipoles.

C.1 Avarage photon multiplicity

The average photon multiplicity n̄ is the avarage of the Poisson distribution before it is

corrected by the various weights. It is therefore not immediately connected to the true

avarage photon multiplicity of the final event. Nonetheless, it is an integral part of the

generation procedure. An analytical result in closed form is available for both dipoles and

multipoles. However, the calculations for multipoles are more involved as the integrations

do not nicely seperate as they do in the dipole case in the chosen frame. Thus, as a starting

point the analytical result for the dipole in its rest frame will be given. It reads

n̄ =

∫ ωmax

ωmin

d3k

k0
S̃q(k) = −α

π
Z1Z2θ1θ2 ln

ωmax

ωmin

(

1 + β1β2

β1 + β2
ln

(1 + β1)(1 + β2)

(1 − β1)(1 − β2)
− 2

)

,

where ωmin is the infrared cut-off and ωmax is the maximal kinematically allowed photon

energy. The latter can be determined by setting the rescaling parameter u to zero in

eqs. (3.19) and (3.24), respectively, and by assuming single photon emission. Additionally,

βi = |~pi|
Ei

.

In the case of a multipole, the integral over the photon energy can still be separated, as

long as the soft photon region is sufficiently well-behaved. This is the case, if Θ(k,Ω) forms

an isotropic hypersurface in the frame of the integration. However, the angular integration

still remains to be done:

n̄ =

∫

d3k

k0
Θ(k,Ω)S̃q(k)

=
α

4π2

∑

i<j

ZiZjθiθj

∫

d3k

k0
Θ(k,Ω)

(

qi
(qi · k)

− qj
(qj · k)

)2

=
α

4π2
ln
ωmax

ωmin

∑

i<j

ZiZjθiθj

(

8π −
∫

dΩ
2(qi · qj)

(qi · ek)(qj · ek)

)

.

Choosing different orientations of the polar axes for each interference term of every

constituent dipole, all angular integrations can be done analytically. Although this may

sound like quite an ad-hoc procedure, it is completely valid and simplyfies the integration

immensely. The orientation for each of the interference terms is thus chosen to be such
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that both momenta lie symmetrically in the unit sphere, both forming an angle αij with

the polar axis, see figure 12. Therefore, by this choice,

(qi · qj) = EiEj (1 − aiaj + bibj)

(qi · ek) = Ei (1 − ai sinϕ sin θ − bi cos θ)

(qj · ek) = Ej (1 − aj sinϕ sin θ + bj cos θ) ,

where eµk again is 1
k0k

µ with e2k = 0, cf. eq. (3.34), and the further parameters are given by

ai,j = βi,j sinαij and bi,j = βi,j cosαij .

With these choices the last integral reads
∫

dΩ
EiEj

(qi · ek)(qj · ek)

=

2π
∫

0

dϕ

π
∫

0

dθ sin θ
1

(1 − ai sinϕ sin θ − bi cos θ) (1 − aj sinϕ sin θ + bj cos θ)
.

Using the decomposition

1

bj (1 − ai sinϕ sin θ − bi cos θ)
− 1

bi (1 − aj sinϕ sin θ + bj cos θ)

=
(bi − bj) + 2bibj cos θ

bibj (1 − ai sinϕ sin θ − bi cos θ) (1 − aj sinϕ sin θ + bj cos θ)

and aibj = ajbi, this can be easily integrated giving
∫

dΩ
EiEj

(qi · ek)(qj · ek)

= 2π







bi√
B2Ci −ABDi +A2Ei

ln
A+B

A−B

√
Ci −Di + Ei + B(2Ci−Di)−A(Di−2Ei)

2
√

B2Ci−ABDi+A2Ei√
Ci +Di + Ei + B(2Ci+Di)−A(Di+2Ei)

2
√

B2Ci−ABDi+A2Ei

− bj
√

B2Cj −ABDj +A2Ej

ln
A+B

A−B

√

Cj −Dj + Ej +
B(2Cj−Dj)−A(Dj−2Ej)

2
√

B2Cj−ABDj+A2Ej

√

Cj +Dj + Ej +
B(2Cj+Dj)−A(Dj+2Ej)

2
√

B2Cj−ABDj+A2Ej






,

with

A = bi − bj

B = 2bibj

Ci,j = 1 − ai,j

Di,j = ∓ bi,j

Ei,j = a2
i,j + b2i,j .

Upon closer examination it can be seen that for αij → 0 the result of the dipole case is

recovered.
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C.2 Photon energy

Due to the decompostion of the integration over the photon energy and the integration

over the unit sphere, the photon energy distribution and the photon angular distribution

can be generated seperately. Of course, this independence of distributions is no longer true

after the reweighting procedure, but it alleviates the generation of the crude distribution.

In the imlementation presented here, the photon energy is distributed according to 1
k0 ,

generated through

k0 = ωmin

(

ωmax

ωmin

)R

where R is a uniformly distributed random number on the interval [0, 1].

C.3 Photon angles

Similar to all other parts of the photon distribution, the photon angles are also generated

according to S̃q(k). For this, the relevant function is recast into the form

−
(

qi
(qi · ek)

− qj
(qj · ek)

)2

= − 1 − β2
i

(1 − βi cos θ)2
+

2(1 + βiβj)

(1 − βi cos θ)(1 + βj cos θ)
−

1 − β2
j

(1 + βj cos θ)2
,

where θ is some polar angle w.r.t. the dipole axis in the dipole rest frame. In this frame, the

generation of the azimuthal is trivial - it just follows a flat distribution in [0, 2π]. The polar

distribution above can be bound from above through the interference term. This allows to

generate the true distribution by generating the angle according to the interference term

and applying a hit-or-miss rejection. The interference term can be decomposed analogously

to the general case above into two independent terms according to

1

(1 − βi cos θ)(1 + βj cos θ)
=

βiβj

βi + βj

(

1

βj(1 − βi cos θ)
− 1

βi(1 + βj cos θ)

)

.

The cosine of the polar angle, cos θ, is then generated to either of the two terms, i.e. it is

generated according to (1 − βi cos θ)−1 with probability

Pi =
ln 1+βi

1−βi

ln 1+βi

1−βi
+ ln

1+βj

1−βj

and according to (1 + βj cos θ)−1 with probability Pj = 1− Pi, selected through a random

number. These angles can be generated by

cos θ =
1

βi

[

1 − (1 + βi)

(

1 − βi

1 + βi

)R
]

in the former case and

cos θ = − 1

βj

[

1 − (1 − βj)

(

1 + βj

1 − βj

)R
]
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in the latter. R again is a uniformly distributed random number on [0, 1]. The correction

weight for obtaining the full distribution reads

W =
− 1−β2

i

(1−βi cos θ)2
+

2(1+βiβj)
(1−βi cos θ)(1+βj cos θ) −

1−β2
j

(1+βj cos θ)2

2(1+βiβj)
(1−βi cos θ)(1+βj cos θ)

≤ 1 .

The azimutal angle ϕ is distibuted uniformly.

C.4 Photons from multipoles

In a multipole configuration again the photons are generated according to S̃q(k). The inte-

gral over photon energies can still be seperated from the angular integrations, decoupling

the generation of the energy of a single photon as above. However, its angular distribution

is very complex. But due to

S̃q(k) =
∑

i<j

S̃(qi, qj , k)

the photon angles are distributed according to

−
∑

i<j

|ZiZjθiθj|
(

qi
(qi · ek)

− qj
(qj · ek)

)2

.

This is nothing but a sum of angular distributions of different dipoles which are not in

their respective rest frame.

Subsequently, one of those constituent dipoles is chosen with the probability

Pij =
|n̄ij|
∑

i<j

|n̄ij|
=

∣

∣

∣

∫

d3k
k0 S̃(qi, qj , k)

∣

∣

∣

∑

i<j

∣

∣

∣

∫

d3k
k0 S̃(qi, qj, k)

∣

∣

∣

.

Then, photon angle generation can proceed as above in the rest frame of the dipole. To

obtain the right distribution in the rest frame of the overall multipole, a null-vector of unit

length is created in the rest frame of the dipole using the newly generated angles ϕ ant θ.

Then this null vector is boosted into the rest frame of the multipole. It now has the angular

distribution according to its constituent dipole in this frame. Since it is a null vector it has

the properties of a photon and only needs to be rescaled to the energy generated earlier.

D. Massive dipole splitting functions

The massive dipole splitting functions are needed for the calculation of the approximation

to the infrared subtracted single hard photon emission matrix element β̃1
1 . They are taken

directly from [17] for spin-1
2 emitters and are generalised from [19] for all other cases.

Problems arising during this generalisation are related to the fact that these splitting

functions for spin-1 particles are only given for massless gluons and that all initial states

are considered massless as well. The extension to radiation off massive spin-1 particles is
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rather straight forward by augmentation with a simple mass term. The extension to massive

initial states is less clear since decay matrix element are far off the massless initial state

limit. However, the decaying particle is allways much more massive than its decay products

when those are supposed to emit hard bremsstrahlung. Thus, photons are predominantly

emitted at large angles to the initial state resulting in negligible contributions from these

splitting functions. Hence, they can safely be omitted.

Also, velocity factors from [19] have been omitted. They were introduced to facilitate

the analytic integration and change neither the infrared nor the quasi-collinear limit. They

only result in a different interpolation inbetween. The same is true for the factor Rij in

the massive fermion splitting function of [17]. Nonetheless, here this factor is kept because

of the direct applicability of these splitting functions to the completely massive splitting.

Three cases need to be differentiated regarding the state, initial or final, the emitter

and spectator are in. The fourth case where both emitter and spectator are in the initial

state lies outside the present applicability of this program, it will therefore be omitted.

To repeat the notation, pi is the 4-momtentum of the emitter, pj that of the spectator

and k is the emitted photon. All massive dipole splitting functions will be given, in that

order, for spin-0, spin-1
2 and spin-1 emitters. Since there are no massive dipole splitting

functions available for emitters of spin-3
2 or spin-2, their emissions have to be described

by the soft limit only. Of course, it is allways possible to implement exact process specific

matrix elements.

Final state emitter, final state spectator.

gij(pi, pj , k) = g
(soft)

ij (pi, pj , k)

=
1

(pi · k)Rij(yij)

[

2

1 − zij(1 − yij)
− 1 − zij −

m2
i

(pi · k)

]

=
1

(pi · k)

[

2

1 − zij(1 − yij)
+

2

1 − zkj(1 − yij)
+ 2zijzkj − 4 − m2

i

(pi · k)

]

with

yij =
pik

pipj + pik + pjk

zij =
pipj

pipj + pjk

zkj = 1 − zij

vik,j =
1

2
Rij(yij)

√

λ(P 2
ij ,m

2
i ,m

2
j)

(pi + k) · pj

and

Rij(x) =

√

(

2m2
j + P̄ 2

ij(1 − x)
)2

− 4P 2
ijm

2
j

√

λ(P 2
ij ,m

2
i ,m

2
j )
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with

Pij = pi + pj + k

P̄ 2
ij = P 2

ij −m2
i −m2

j = 2 (pipj + pik + pjk)

wherein the photon is massless, λ(x, y, z) is the Kallen-function.

Final state emitter, initial state spectator.

gij(pi, pj , k) = g
(soft)

ij (pi, pj , k)

=
1

(pi · k)xij

[

2

2 − xij − zij
− 1 − zij −

m2
i

(pi · k)

]

=
1

(pi · k)xij

[

2

2 − xij − zij
+

2

2 − xij − zkj
+ 2zijzkj − 4 − m2

i

(pi · k)

]

with

xij =
pipj + pjk − pik

pipj + pjk

zij =
pipj

pipj + pjk

zkj = 1 − zij

Initial state emitter, final state spectator. The emitting particle is allways assumed

to be much heavier than its decay products resulting in its contributions to the real emission

corrections to be negligible. Thus,

gij(pi, pj , k) = g
(soft)

ij (pi, pj , k)

is set irrespective of the emitter’s spin.

E. Basic building blocks For matrix element calculations

In this appendix a short summary on the defintions of the basic building blocks (cf. [20, 21])

for the calculations of exact matrix elements will be given. Additionally, techniques to

incorporate propagators into that scheme will be reviewed.

X-function. TheX-function is a contraction over a ferimonic current coupled to a vector

with an arbitrary structure of the vertex.

X (p1, s1; p; p2, s2; cL, cR) = ū(p1, s1) 6p [cLPL + cRPR]u(p2, s2) ,

where u(pi, si) may be a particle or anti-particle spinor, PL = 1−γ5

2 and PR = 1+γ5

2 . The

vector pµ dotted into the γ-matrix may be a momentum vector or a polarisation vector.

For the explicite calculation of the X-Function see table 3.
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s1s2 X(p1, s1; p; p2, s2; cL, cR)

++ µ1µ2η
2cL + µ2η1η2cR + cRS(+; p1, p)S(−; p, p2)

+− cLµ1ηS(+; p, p2) + cRµ2ηS(+; p1, p)

Table 3: X-Functions for different helicity combinations. Missing combinations can be obtained

using the simultaneous replacements + ↔ − and L↔ R.

s1s2 Y (p1, s1; p2, s2; cL, cR)

++ cRµ1η2 + cLµ2η1

+− cLS(+; p1, p2)

Table 4: Y -Functions for different helicity combinations. Missing combinations can be obtained

using the simultaneous replacements + ↔ − and L↔ R.

s1s2s3s4 Z(p1, s1; p2, s2; p3, s3; p4, s4; c
12
L , c

12
R ; c34L , c

34
R )

+ + ++ 2
[

S(+; p3, p1)S(−; p2, p4)c
12
R c

34
R + µ1µ2η3η4c

12
L c

34
R + µ3µ4η1η2c

12
R c

34
L

]

+ + +− 2η2c
12
R

[

S(+; p1, p4)µ3c
34
L + S(+; p1, p3)µ4c

34
R

]

+ + −+ 2η1c
12
R

[

S(−; p3, p2)µ4c
34
L + S(−; p4, p2)µ3c

34
R

]

+ + −− 2
[

S(+; p4, p1)S(−; p2, p3)c
12
R c

34
L + µ1µ2η3η4c

12
L c

34
R + µ3µ4η1η2c

12
R c

34
R

]

+ − ++ 2η4c
34
R

[

S(+; p1, p3)µ2c
12
R + S(+; p2, p3)µ1c

12
L

]

+ − +− 0

+ −−+ −2
[

µ1µ4η2η3c
12
L c

34
L + µ2µ3η1η4c

12
R c

34
R − µ1µ3η2η4c

12
L c

34
R − µ2µ4η1η3c

12
R c

34
L

]

+ −−− 2η3c
34
R

[

S(+; p4, p2)µ1c
12
L + S(+; p1, p4)µ2c

12
R

]

Table 5: Z-Functions for different helicity combinations. Missing combinations can be obtained

using the simultaneous replacements + ↔ − and L↔ R.

Y -function. The Y -function is the pendant of theX-function when the fermionic current

is coupling to a scalar rather than a vector.

Y (p1, s1; p2, s2; cL, cR) = ū(p1, s1) [cLPL + cRPR]u(p2, s2) .

Its explicit calculation is shown in table 4.

Z-function. The Z-function is a contraction over two ferionic currents connected by a

massless gauge boson (cf. table 5).

Z
(

p1, s1; p2, s2; p3, s3; p4, s4; c
12
L , c

12
R ; c34L , c

34
R

)

= ū(p1, s1)γ
µ
[

c12L PL + c12R PR

]

u(p2, s2)ū(p3, s3)γµ

[

c34L PL + c34R PR

]

u(p4, s4) .

S-function. For the calculation of the above spinoral products it is useful to define the

S-Function

S(s; p1, p2) = ū(p1, s)u(p2,−s) .
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Its two possible forms for given p1 and p2 are

S(+; p1, p2) = 2
(p1 · k0)(p2 · k1) − (p1 · k1)(p2 · k0) − iǫαβγδp

α
1 p

β
2k

γ
0k

δ
1

η1η2

S(−; p1, p2) = −2
(p1 · k0)(p2 · k1) − (p1 · k1)(p2 · k0) + iǫαβγδp

α
1 p

β
2k

γ
0k

δ
1

η1η2
,

where k0 is an arbitrary null vector (k2
0 = 0) and k1 satisfies the relations k2

1 = −1 and

(k0 · k1) = 0. Furthermore,

ηi =
√

2(pi · k0) .

It is also useful to define the quantity

µi = ±mi

ηi
,

where ± refers to particles/anti-particles.

Fermionic propagators. These propagators can be incorporated using the following

identity:

(6p±m) =
1

2

∑

s

[(

1 ± m
√

p2

)

u(p, s)ū(p, s) +

(

1 ∓ m
√

p2

)

v(p, s)v̄(p, s)

]

.

This allows to cut the line and replace it with a sum of external particles

Bosonic propagators. Bosonic propagators can be incorporated by writing out their

Lorentz-structure explicitely. This is trivial in Feynman gauge, if the vector is massless .

Massive propagators are best included in unitary gauge, since then no additional goldstone

boson exchange has to be included.
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